AFRL-IF-RS-TR-2002-262

Final Technical Report
October 2002

BUILDING A DYNAMIC INTEROPERABLE
SECURITY ARCHITECTURE FOR ACTIVE
NETWORKS

University of Illinois

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G378

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2002-262 has been reviewed and is approved for publication

%f/gﬂ

SCOTT S. SHYNE
Project Engineer

APPROVED:

FOR THE DIRECTOR: O)/OZU
WARREN H. DEBANY, Technical Advisor

Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
October 2002

3. REPORT TYPE AND DATES COVERED

Final May 98 — Jun 02

4. TITLE AND SUBTITLE
BUILDING A DYNAMIC INTEROPERABLE SECURITY ARCHITECTURE
FOR ACTIVE NETWORKS

6. AUTHOR(S)
Roy H. Campbell and M. Dennis Mickunas

5. FUNDING NUMBERS
C -F30602-98-1-0192

PE -62301E
PR - G378
TA - 00
Wwu - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of lllinois

Grants and Contracts Office

109 Coble Hall — 801 South Wright Street

Champaign lllinois 61820-6242

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGA

3701 North Fairfax Drive 525 Brooks Road

Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-262

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Scott S. Shyne/IFGA/(315) 330-4819/ Scott.Shyne@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

Security is viewed as one of the major obstacles to the widespread deployment active networks. A significant challenge
is to develop mechanisms to change software state on routers dynamically, without sacrificing protection guarantees.
The Seraphim projects leverages the inherent dynamism in the paradigm to build dynamic security mechanisms for
active networks. Seraphim's security architecture is component based, dynamically extensible, and reflective, and
supports a variety of policy strategies and enforcement mechanisms. This enabled the development of customizable,
interoperable, domain-specific, or task-specific security policies and mechanisms, to meet the security requirements of
active network entities. Administrators were able to develop security policies as active network capsules, called dynamic
policies, and enforce these policies by executing them in a suitable software context on active network routers. A suite
of confidentiality, integrity, authentication and access-control mechanisms was developed to secure the node of an
active network. This suite was based on standardized APIs and provided support for customized Quality of Protection
guarantees. Customized dynamic policies were created and installed at run-time, trading functionality for performance,
to implement low-overhead solutions that were able to successfully counter threats and attack, without sacrificing

protection guarantees.

14. SUBJECT TERMS

15. NUMBER OF PAGES

Active Networks, Security Mechanisms, Security Policies, Access-Control Mechanisms 90

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

. SUMMARY 1
. OVERVIEW OF CONTRIBUTIONS 2
1.1 SECURITY ARCHITECTURE FOR DYNAMIC POLICY ...uuvuiiuiuieieieieieiiieieiiieeeeeeiieeeeeeaeeaesesasasasssnssnssnnnnnnnes 2
1.2 DYNAMIC ACCESS CONTROL POLICIESuvviiiiiiiiiiiiiieeeeeeeeciteee e e e e eeeearee e e e eeeeaveeeeeeeeesennaaeeeeeeeennsnnneeeens 3
1.3 SECURE NODE ARCHITECTURE AND SECURITY AS SERVICES........ccottturtteeeeeeeiiirreeeeeeeeeeiinreeeeeeeeeesnnneeeees 3
1.4 SECURE FLOW ANALYSIS .. .coiiittttiieeeeeiiiitteee e et eeeetteeeeeeeeeeetaaaeeeeeeeeesitsseseseeeeesesssseseeeeesassrseeeseeeanssrreeeees 3
1.5 FORMAL SPECIFICATION AND VALIDATION OF DYNAMIC POLICIESccvviiiiiiiiiiiieee e 4
1.6 DENIAL OF SERVICE PROTECTIONiiouutiiiieeiiiiieieeeeeeeeeeeaeeeeeeeesessasseseessseesnssssseessesssnsssseessessnssanseeees 4
3. LIST OF ACCOMPLISHMENTS 5
4. REFERENCES 8
APPENDICES 10
APPENDIX A AN AGENT BASED ARCHITECTURE FOR SUPPORTING APPLICATION LEVEL SECURITY......... 11
APPENDIX B SERAPHIM: DYNAMIC INTEROPERABLE SECURITY ARCHITECTURE FOR ACTIVE NETWORKS
... 23
APPENDIX C FLEXIBLE SECURE MULTICASTING IN ACTIVE NETWORKSccoiiiiiiiiirerieeeeeeninreeeeeeeeeninnns 33
APPENDIX D SECURE INFORMATION FLOW IN MOBILE BOOTSTRAPPING PROCESS.ccoooevvviiiiiiiiinnnnnnn. 41
APPENDIX E DYNAMIC, DISTRIBUTED, SECURE MULTICAST IN ACTIVE NETWORKScceeeevrveeeeirieeennns 49
APPENDIX F SECURING THE NODE OF AN ACTIVE NETWORKuuuviiiiiiiiiiieiiieeeeieeieeeeeeeeeseesneeeeeeessessnnnes 55
APPENDIX G PLUGGABLE ACTIVE SECURITY FOR ACTIVE NETWORKSouvvviiiiiiiiiieieeieeeeeeiinieeeeeeeeeeinnens 69
APPENDIX H DEVELOPING DYNAMIC SECURITY POLICIESooouuuiiiiiiiiieieieeee et eeeeenneeeeeeeeseesnnees 75

1. SUMMARY

In an active network, new protocols and services can be injected into the network
using smart packets to carry customized software components. This technology increases
the degree and sophistication of the network architecture and enables fast deployment of
new protocols and services. However, allowing installation of arbitrary software
components on routers may cause undesirable side effects and impact the protection
guarantees of the software on the routers. Administrators of active network routers may
want to restrict the behavior of active capsules and preserve certain behavior guarantees at
all times. These guarantees may be specified as safety properties of component
mechanisms, noninterference properties of information flows, or timing guarantees in
availability policies. Traditional security mechanisms and network policy management
tools have limited support for changing and enforcing different types of policy strategies,
let alone policies, at run-time. The ability to specify, implement and enforce these policies
in a dynamic environment becomes crucial.

In Seraphim, we study the interoperability, extensibility, and configuration issues of
security policies for active networks. To address these issues, we introduce the notion of
dynamic policies that can be enforced by executing them on an active network node. These
policies are designed by formally modeling the behavior and interactions between different
components on active routers. Behavioral guarantees, expressed as temporal safety
properties, form an integral part of the specification of dynamic policies and can be
validated within the model framework. Policies are implemented by wrapping the
mechanisms to change operational parameters with suitable guards so as to preserve these
behavior guarantees. This combination of guards and commands are encapsulated in active
capsules and the policy they specify is enforced by instantiating and executing these
capsules in a suitable sandbox-like environment on the active router. Using our policy
framework, we can change policy strategies (e.g., between MAC and RBAC) at run-time,
in response to intrusions and other security violations, without sacrificing security
guarantees.

We also provide a suite of customizable security mechanisms to protect the
integrity, authenticity, and confidentiality of capsules exchanged between active routers.
These mechanisms to secure the node of an active network are implemented as services
based on standardized APIs. The services are carefully designed and analyzed to preserve
noninterference properties and prevent information leaks. The dynamism afforded by the
architecture also allows us to implement different Quality of Protection (QoP) levels to
provide customizable security for active flows. This enables us to implement minimal
security policies and deploy stronger mechanisms on a need to protect basis, and amortize
performance penalties. We believe that this support for dynamism in security is our major
contribution in the context of security for active networks.

2. OVERVIEW OF CONTRIBUTIONS

We believe that no single security architecture will be able to address the security
issues for active networks in general. Customizable security policies and extensible
security mechanisms will play an important part in addressing the security concerns with
the practical deployment of active network infrastructure on routers. We argue that
developing satisfactory security solutions in a dynamic environment requires support for
dynamic security. We provide a framework to develop reactive security solutions in this
context, on a need-to-protect basis with minimal overhead in terms of software and
performance. In this section, we summarize our major contributions, which include:

e A dynamic security architecture for active networks that provides support for
dynamic policies that integrates seamlessly with proposed active network
architecture [Liu00-1, Liu00-2], along with a distributed secure multicast
application to demonstrate these policies [Var99, Var00, Liu00-3].

e A componentized policy framework that implements different access control
strategies and allows administrators to change between policy strategies at run
time [NalO00].

e A suite of customizable mechanisms to secure the node of an active network
along with a flow analysis to guarantee noninterference [Liu005, Liu00-6].

e Formal specification and validation of dynamic policies [Nal02].

e Investigation of denial of service prevention and implementation of certified
bandwidth mechanisms.

We describe each of these contributions in greater detail the following subsections.
1.1 SECURITY ARCHITECTURE FOR DYNAMIC POLICY

The Seraphim project developed dynamic and fully extensible security architecture
for active networks [Liu0O-1, Liu00-2]. The architecture is based on the principles
underlying active networks rather than on existing static systems. Seraphim project adopts
ideas and technologies from previous Cherubim mobile agent based security architecture
research, including dynamic security policies that support interoperability among different
security domains, and active capabilities that provide application specific security
functions. In addition, Seraphim’s security architecture for active networks imposes only a
minimal set of security functions on the base active network architecture to support secure
deployment of new security services. More sophisticated and application specific security
functions may be recursively installed using a secure reconfigurable [Liu00-4] bootstrap
process. Seraphim’s architecture is not constrained to one specific security scheme for
securing smart packets and active nodes. This reflective design allows the maximum
flexibility for building a secure active network environment. Seraphim’s security
architecture fits transparently into the proposed Active Network and Active Network
Security Architecture. We have also integrated it with the ABone test-bed.

1.2 DYNAMIC ACCESS CONTROL POLICIES

Seraphim’s Dynamic Policy Management Framework, written in Java, implements
different access control strategies. In addition to DAC (Discretionary Access Control),
MAC (Mandatory Access Control) and RBAC (Role Based Access Control) we have also
incorporated the I-RBAC (Interoperable RBAC) [Kap00] and R>BAC models developed by
our group. The [-RBAC model allows us to interoperate between different RBAC domains,
providing us a dynamic mechanism to translate our dynamic access control policies across
different domains. The R’BAC model allows us to change between two different RBAC
instances in the same domain. This model is useful to deploy a restrictive access control
policy under an attack and change it back to the default when the threat has receded.

1.3 SECURE NODE ARCHITECTURE AND SECURITY AS SERVICES

The secure node architecture includes an active node operating system security API,
an active security guardian, and quality of protection (QoP) provisions [Liu00-5, Liu0l1,
Liu02]. The architecture supports highly customized and situational policies created by
users and applications dynamically. It permits active nodes to satisfy application-specific
dynamic security and protection requirements. The secure node architecture can provide a
fundamental base for securing the active network infrastructure. It provides a framework
that adapts and implements the Pluggable Authentication Module API, Generic Access and
Authorization API and Generic Security Services API for authentication, authorization, and
various security services. The implementation uses DES, IDEA, and Rijndael encryption
algorithms, whose keys are exchanged through RSA/X.509v3 algorithm, for dynamic
customized security services. The security configuration supports various encryption
algorithms and RSA key lengths. Applications can dynamically select the suitable security
configuration and services at each routing hop, based on their security and performance
requirements.

1.4 SECURE FLOW ANALYSIS

In addition to the secure node architecture, we also provide the analysis of secure
information flow using a type system [Liu0O1]. Information flow control is concerned with
the right of dissemination of information. Secure information flow properly restricts the
propagation of sensitive cryptographic data beyond the security API to untrusted
environments. The analysis demonstrates that the type system can ensure secure flow
enforcement efficiently and therefore provide additional security assurance for active
networks. The type system guarantees that a well-typed program satisfies the
noninterference security property. This means that the program does not leak sensitive
data.

1.5 FORMAL SPECIFICATION AND VALIDATION OF DYNAMIC POLICIES

We introduce formal modeling and specification in our policy development life
cycle. In most existing systems, policies are implemented and enforced by changing the
operational parameters of shared system objects. These policies do not account the
behavior of the entire system, and enforcing these policies can have unexpected interactive
or concurrent behavior. We develop a policy specification, implementation, and
enforcement methodology based on formal models of interactive behavior and satisfiability
of system properties. We show that by carefully designing the code to change the
operational parameters our policy implementation entities, dynamically installing and
executing our policies does not affect the behavioral guarantees specified by the properties.
Our dynamic policy is a program consisting of a set of guards and actions, created by our
policy administrator. It encodes not only the logic to modify the system implementation to
change operational parameters, but also includes all the necessary guards to enforce good
behavior and prevent its misuse. For example, in the access control policy example, the
guard can include proofs of authorization, and the commands are programs to change
parameters of an access control rule. In our Seraphim active network prototype, these
programs map directly to active capsules, and can be viewed as in-line policies. We also
describe other types of dynamic policies for information flow and availability, based on
safety, liveness, fairness, and other properties. We believe that dynamic policies are
important building blocks of reactive security solutions for active networks.

1.6 DENIAL OF SERVICE PROTECTION

In addition to our work in dynamic policies, we have also developed a behavioral
model of network denial of service; especially Distributed Denial of Service attacks
(DDOS). Based on the behavior analysis, we argue that the trace of a DDOS victim’s
behavior cannot be made DDOS resistant by implementing a suitable mechanism on the
victim alone. Bandwidth agreements, similar in flavor to user agreements, are necessary to
prevent denial of service. We have implemented a lightweight mechanism that was
demonstrated at the December 2000 Demo meeting, to attach bandwidth certificates to
legitimate traffic. We call these certificates CABs or Credentials that Authorize
Bandwidth. A CAB is a small, fixed length identifier that cannot be forged easily. It
certifies that the packet it is attached to is legitimate. It can be used to mark legitimate
UDP or control packets for DDOS resistance. One of the ways to ensure that valid CABs
can only be created by trusted entities is to use cryptography and tie in a shared secret to the
CAB value. Certified bandwidth can be used to implement cooperative bandwidth
agreements required to prevent denial of service.

3. LIST OF ACCOMPLISHMENTS

June 1998 — June 1999:

1. Modified ANTS active network toolkit and built the SAINTS (Secure Active
Interoperable Network Toolkit System) to implement the Active network architecture with
explicit NodeOS and Execution Environment (EE) objects. This modified toolkit was the
test-bed for most of our experiments.

2. Designed and implemented a lean security guardian to provide access control from the
EE to the shared NodeOS resources. The security guardian is a colocated extension to the
NodeOS. Every node has a security guardian, through which all accesses to node resources
occur.

3. Completed implementation of the NodeOS proxy to support portability. The EEs direct
their requests for NodeOS resources to the NodeOS proxy that sits atop the NodeOS. The
proxy acts as a wrapper to the NodeOS API and redirects access control requests to the
security guardian.

4. Completed implementation of Role Based Access Control (RBAC) within the Seraphim
policy framework and integrated support for DAC and MAC from our previous project into
the Seraphim toolkit.

5. Demonstrated support for secure, flexible, and dynamic multicast, as an extension of the
original ANTS multicast scheme. Deposited a Master’s thesis titled “Dynamic Distributed
Secure Multicast in Active Networks”.

July 1999 - June 2000:

1. Designed a NodeOS security API to support authentication, authorization and integrity.
The API includes Pluggable Authentication Module (PAM) API, Generic Security Services
(GSS) API, and Generic Authorization and Access Control (GAA) API. This security API
is complement to the current NodeOS Interface Specification that focuses on fast network
packet-forwarding fine-grained quality of service.

2. Developed an Active Caching framework for our active capabilities. By caching the
reusable active capabilities, the system reduces the overhead of retrieving the active
capability every time a security decision has to be made.

3. Modified and enhanced the Security Architecture for Active Networks document and
circulated it throughout the active network community. The modifications and
enhancements show the lessons learned from our Seraphim project and reflect the view of
flexible, dynamic and interoperable active network security based on active capabilities.

4. Developed the IRBAC model of secure interoperability between security domains
operating under the Role Based Access Control (RBAC) policy for dynamic role
translations.

5. Produced a PhD thesis on trust management in a distributed environment. The solution
proposed in this model avoids the use of global name spaces and central trust authorities.
The model enables fine-grained trust specification and flexible certificate management.

6. Implemented the NodeOS security API, and integrated it into our SAINTS platform that
uses active capabilities and security guardian for active security.

7. Extended the NodeOS security API to support Quality of Protection (QoP) in active
networks. The active applications can dynamically change the security and protection
characteristics while traveling from hop to hop. Some examples of security and protection
characteristics are different security algorithms, key sizes, and supports of security services.

8. Provided more input for the Security Architecture for Active Networks document

Implemented the IRBAC model in Seraphim architecture. With IRBAC, more than one
autonomous domain can seamlessly interact with each with adequate security support.

July 2000 - June 2001:

1. Developed the BARMAN (Bandwidth Authorization and Resource Management in
Active Network) protocol for the NodeOS. This protocol prevents denial of service attacks
that “flood” networks with unwanted packets and block legitimate network traffic.

2. Deposited Master’s thesis titled “A Componentized Framework for Dynamic Security
Policies”.

3. Participated in December 2000 AN PI Meeting with Team 4 integrated demo. Seraphim
package was integrated with CANES platform and provided dynamic security support. In
addition, BARMAN protocol was implemented inside the CANES Bowman NodeOS to
provide safety against flooding DDOS attacks.

4. Developed the Reactive Role Based Access Control model (R*BAC). RBAC is a way
to use the IRBAC model as a defense mechanism against intrusions. We used R’BAC to
efficiently change the role hierarchy inside a security domain to counter the possible
security threats. We used INFOCON (Information Operation Condition) notion from DoD
to model the current threats to the networks and used R>BAC to dynamically reconfigure
the networks for tighter defense.

5. Developed a fuzzy logic based risk model. In this model, every threat is represented as
a fuzzy set. The risk analyzer calculates the network-wide overall risk based on the fuzzy
logic operation.

6. Participated in June 2001 AN PI meeting with a demonstration of R"BAC model and the
fuzzy logic based risk assessment system. In this system, every threat to the network is
characterized as a fuzzy set and the current risk to the whole network is calculated with

fuzzy logic. We also adopted the notion of DoD’s INFOCON (Information Operation
Condition) to show how our risk assessment system and R’ BAC model can be used as an
efficient defensive mechanism.

July 2001 — May 2002:

1. Deposited Ph. D Thesis on “Securing the Node of an Active Network. This thesis
explores the security issues and develops a security architecture for NodeOS security by
implementing security as standardized services adapted to the Active Network architecture.
The thesis includes a validation of the design using secure flow analysis based on a type
system to validate the noninterference properties of the composition of these security
services.

2. Developed a formal model of dynamic policies and introduced the notion of property
preserving policies. We also used formal validation and verification techniques to make
strong safety guarantees about our dynamic access control policy framework.

3. Developing a formal Model of the Distributed Denial of Service problem.

4. REFERENCES

[1]

[5]

[6]

[9]

[10]

[11]

[Liu00-1] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian, Roy H. Campbell, and
M. Dennis Mickunas, An Agent Based Architecture for Supporting Application
Level Security. DARPA Information Survivability Conference and Exposition,
Hilton Head Island, South Carolina, January 2000.

[Liu00-2] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad Naldurg,
and Seung Yi, Seraphim: Dynamic Interoperable Security Architecture for Active
Networks. IEEE Third Conference on Open Architectures and Network
Programming Proceedings (OPENARCH’2000), Tel Aviv, Israel, March 2000.
[Liu00-3] Zhaoyu Liu, Roy H. Campbell, Sudha K. Varadarajan, Prasad Naldurg,
Seung Yi, and M. Dennis Mickunas, Flexible Secure Multicasting in Active
Networks. International Workshop on Group Computation and Communications,
Taipei, Taiwan, April 2000.

[Liu00-4] Zhaoyu Liu, M. Dennis Mickunas, and Roy H. Campbell, Secure
Information Flow in Mobile Bootstrapping Process. International Workshop on
Wireless Networks and Mobile Computing, Taipei, Taiwan, April 2000

[Var00] Sudha K. Varadarajan, Tin Qian, and Roy H. Campbell, Dynamic,
Distributed, Secure Multicast in Active Networks. IEEE International Conference
on Communication (ICC’2000), New Orleans, Louisiana, June 18-22, 2000.
[Kap00] I-RBAC 2000: Apu Kapadia, Jalal Al-Muhtadi, Roy H. Campbell, and M.
Dennis Mickunas, Secure Interoperability Using Dynamic Role Translation.
Proceedings of the 1% International Conference on Internet Computing (IC’2000),
Las Vegas, Nevada, June 26, 2000.

[Liu00-5] Zhaoyu Liu, Roy H. Campbell, and M. Dennis Mickunas, Securing the
Node of an Active Network Active Middleware Services. Kluwer Academic
Publishers, Boston, Massachusetts, September 2000.

[Liu00-6] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Roy H. Campbell, and M. Dennis
Mickunas, Pluggable Active Security for Active Networks. 12" IASTED
International Conference on Parallel and Distributed Computing and Systems
(PDCS’2000), Las Vegas, Nevada, November 6-9, 2000.

[Liu01] Zhaoyu Liu, Active Security for Active Networks, Ph. D Thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign,
2001.

[Nal02] Prasad Naldurg, R. H. Campbell and M. Dennis Mickunas, Developing
Dynamic Security Policies, To Appear in the Proceedings of the 2002 DARPA
Active Networks Conference and Exposition (DANCE 2002), San Francisco, CA,
USA, IEEE Computer Society Press, May 29-31, 2002.

[Liu02] Zhaoyu Liu, Roy H. Campbell, and M. Dennis Mickunas, Security as
Services in Active Networks. To Appear in IEEE International Symposium on
Computers and Communication (ISCC 2002), Taormina, Italy, July 2002

[12]

[13]

[14]

[Qia00] Tin Qian, Dynamic Authorization Support in Large Distributed Systems,
Ph. D Thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2000.

[Var99] Sudha Varadarajan, Dynamic Distributed Secure Multicast in Active
Networks. MS Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, August 1999.

[Nal0O] Prasad Naldurg, A Componentized Framework for Dynamic Security
Policies, MS Thesis, Department of Computer Science, University of Illinois at
Urbana-Champaign, August 2000.

APPENDICES

Papers attached to this report:

A Zhaoyu Liu, Prasad Naldurg, Seung Y1i, Tin Qian, Roy H. Campbell, and M. Dennis
Mickunas, An Agent Based Architecture for Supporting Application Level Security.
DARPA Information Survivability Conference and Exposition, Hilton Head Island, South
Carolina, January 2000.

B Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad Naldurg, and Seung
Yi, Seraphim: Dynamic Interoperable Security Architecture for Active Networks. IEEE
Third Conference on Open Architectures and Network Programming Proceedings
(OPENARCH’2000), Tel Aviv, Israel, March 2000.

C Zhaoyu Liu, Roy H. Campbell, Sudha K. Varadarajan, Prasad Naldurg, Seung Yi,
and M. Dennis Mickunas, Flexible Secure Multicasting in Active Networks. International
Workshop on Group Computation and Communications, Taipei, Taiwan, April 2000.

D [Liu00-4] Zhaoyu Liu, M. Dennis Mickunas, and Roy H. Campbell, Secure
Information Flow in Mobile Bootstrapping Process. International Workshop on Wireless
Networks and Mobile Computing, Taipei, Taiwan, April 2000.

E Sudha K. Varadarajan, Tin Qian, and Roy H. Campbell, Dynamic, Distributed,
Secure Multicast in Active Networks. IEEE International Conference on Communication
(ICC’2000), New Orleans, Louisiana, June 18-22, 2000.

F [Liu00-5] Zhaoyu Liu, Roy H. Campbell, and M. Dennis Mickunas, Securing the
Node of an Active Network, Active Middleware Services. Kluwer Academic Publishers,
Boston, Massachusetts, September 2000.

G [Liu00-6] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Roy H. Campbell, and M. Dennis
Mickunas, Pluggable Active Security for Active Networks, 12™ TASTED International
Conference on Parallel and Distributed Computing and Systems (PDCS’2000), Las Vegas,
Nevada, November 6-9, 2000.

H [Nal02] Prasad Naldurg, R. H. Campbell, and M. Dennis Mickunas, Developing
Dynamic Security Policies, To Appear in the Proceedings of the 2002 DARPA Active
Networks Conference and Exposition (DANCE 2002), San Francisco, CA, USA, IEEE
Computer Society Press, May 29-31, 2002.

10

APPENDIX A

An Agent Based Architecture for Supporting Application
Level Security*

Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian, Roy H. Campbell, M. Dennis Mickunas
Dept. of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
{zhaoyu, naldurg, seungyt, ting, roy, mickunas}@cs.uiuc.edu

Abstract

The heterogeneous nature of distributed systems raises
many security issues and concerns. Traditional systems
cannot provide customized security policies and mecha-
nisms for heterogeneous applications. Historically, appli-
cations have relied on a static security architecture to pro-
vide ad-hoc security guarantees. In this paper we propose
a new security architecture based on mobile agents for ap-
plications in distributed environments. Qur approach al-
lows applications to create and enforce customized policies
at run time. These policies and access control require-
ments can be specified using programs. In addition our
framework can handle dynamic requests to change or up-
date these policies and adapt to situational requirements.

1 Introduction

Traditional systems provide security mechanisms to
ensure that system resources are used and accessed
as intended. They also attempt to detect and pre-
vent accidental or intentional misuse. Typically,
these mechanisms tend to be static and it is very
difficult to change the security policy or the mecha-
nisms, once the system is installed. Researchers have
developed a number of new techniques and mecha-
nisms [7, 5, 10, 9, 15] but very few systems provide
support to incorporate these changes.

In a distributed computing environment, applica-
tions and users have varying security requirements.
In existing systems, these applications or users have
very little choice regarding the type of policy or se-
curity mechanism and must rely heavily on the un-
derlying infrastructure to provide security guaran-
tees. For example, delegation and security man-
agement are severely constrained by static security
mechanisms. With systems that support ubiquitous

*This research is supported by DARPA F30602-98-1-0192
and F30602-97-1-0281

11

computing devices, it is reasonable to expect that
different devices will need different guarantees from
the underlying security infrastructure. Traditional
static security mechanisms may not be expressive or
flexible enough to meet the specific needs of a par-
ticular application or device. In order to provide
applications (here we mean both users and devices)
the ability to customize their security, we need a dis-
tributed security architecture that

e is capable of supporting various policies and
mechanisms

e can add, replace or revoke policies and mecha-
nisms

¢ allows applications to specify the kind of secu-

rity guarantees they want from the system, on
the fly

e dynamically enforces these customized policies
and mechanisms

e restricts the use of policy to applications and
systems that need to know the policy

In this paper we propose an architecture solution
that uses mobile agents to provide the required func-
tionality. In our design, these mobile agents are
called active capabilities (ACs) [4, 1]. Basically these
ACs are signed code fragments that are used to spec-
ify policies and mechanisms. Other components of
our architecture provide the framework required to
evaluate and enforce the policies specified by these
ACs and to provide run time revocation, update and
enforcement of these policies and mechanisms.

This paper is organized as follows. Section 2 gives
a brief overview of the architecture and the trust
model and explains each component in detail. Sec-
tion 3 gives a description of different application sce-
narios that demonstrate the advantages of using our

architecture. Section 4 describes two specific im-
plementations of this general architecture. Section
5 presents the preliminary performance results and
the discussion on our implementation overhead. The
last section presents our conclusions.

2 Architecture Description

This section describes the major components of
our architecture and describes the trust model that
forms the basis of their interaction. The most im-
portant component of our architecture is the active
capability(AC). An AC carries a concise representa-
tion of security policies and mechanisms, customized
or tailored for a particular application or device.
The other components in our architecture include
AC management, the software framework and the
evaluation/enforcement engines. AC Management
consists of a distributed network of AC Adminis-
trators, software framework component repositories
and AC servers. These management entities are
trusted. The AC Administrator is responsible for
verifying, validating and certifying the code inside
the AC, and for signing it.

The AC Administrator can additionally manage
the distribution of the ACs using a secure chan-
nel. Alternatively, applications may contact the AC
server and obtain these ACs and embed them in their
code. Trusted applications may be allowed to create
their own ACs. Each protection domain typically
has one or more AC Administrators that are collec-
tively responsible for the integrity of the ACs.

The AC can use a software framework for context.
For example, a software framework may include a
hierarchical structure of object-oriented classes of
standard security policies. Typically this framework
is componentized and arranged so that the compo-
nents themselves can be downloaded from the soft-
ware component framework repository using a secure
channel. Each node, which is typically a computing
device, has an evaluation/enforcement engine in its
trusted address space. This engine can also be cus-
tomized according to the context and its components
can be downloaded using the secure channel dynami-
cally. The ACs are evaluated in the sandbox-like en-
vironment provided by this engine by instantiating
the context of the software framework, which also
enforces the result of this evaluation. The subsec-
tions that follow give a detailed description of these
components.

12

2.1 Active Capabilities

Software
framework
(for context)

Type Code Fragment Signature

Figure 1: Generic Active Capability

The format of a generic active capability is
shown in Figure 1. The first field is similar to a
header and contains information about the type of
the active capability. For instance, the AC type
ACCESS_CONTROL indicates that the AC encodes an
access control policy.

The second field is the most important part of the
AC. Ideally it can contain an arbitrary piece of code,
that specifies the policies or mechanisms for a par-
ticular user. The AC may carry all the code needed
to make a policy decision or implement a particular
mechanism. However, this approach would be too
heavyweight. Instead we advocate the use of a soft-
ware framework that can provide a context for the
code field. The AC code can use the components
of this software framework and impose additional
constraints on their usage, leveraging the expressive
power of the underlying framework.

The next section describes one particular instance
of this framework, which implements types of access
control policies in a modular and composable fash-
ion [8]. The AC then uses the interface exported
by this framework to create a code fragment that
concisely represents one particular customized ac-
cess control policy. In addition, the AC can use the
features provided by the underlying language and
add conditional processing, based on timestamps, or
accumulated credits, to specify timeouts and to im-
pose limits on resource utilization, etc. The flexibil-
ity afforded by this approach is limited only by the
language syntax.

The last field is the digital signature. Typically
the AC is created by an AC administrator or a
trusted entity. This entity is responsible for the in-

tegrity of the capability, and attests to this by sign-
ing the capability. In our distributed architecture,
each protection domain has one or a small number of
replicated AC administrators. The key distribution
and management is simple. If we use a public key in-
frastructure, we need only one key-pair for AC Man-
agement. The administrator(s) can sign the mes-
sage digest of the AC code using its private key and
distribute the corresponding public key within their
protection domain. The evaluation/enforcement en-
gines can verify this signature using the public key
of the AC administrator. This approach scales well
and simplifies trust management.

The AC provides an interface that exports at least
the following methods:

e allowed
® revoke

e delegate
e bind

The allowed method is called by the evalua-
tion/enforcement engine. This method causes the
code in the AC to be evaluated. This method re-
turns a boolean value that controls the enforcement
of the policy or mechanism requested by the appli-
cation.

The revoke and the delegate methods specify in-
terfaces to implement various revocation and delega-
tion strategies. The implementation of these strate-
gies can be customized to suit individual applica-
tions. The bind method is used to bind capabili-
ties to applications and aids in the retrieval of the
context in the evaluation/enforcement engine. This
list is not exhaustive and additional methods can be
added to extend the functionality and create new
AC types.

2.2 Software Framework

This section describes a particular example of a soft-
ware framework that can be used to provide a con-
text for the active capabilities [8]. Traditional se-
curity systems are designed to enforce one particu-
lar security policy. In order to provide users more
flexibility in terms of access control policy specifi-
cation, we have implemented a composable and ex-
tensible object-oriented policy framework in Java.
This framework has a GUI front-end that simplifies
the process of specifying the policies. This allows

13

users and commercial organizations to specify ac-
cess control policies tailored to their specific opera-
tional needs. The motivation and the functionality
exported by this framework are explained in detail
in the subsections that follow.

2.2.1 Access Control Policies

Access control is the mechanism by which a security
system exercises control over the access and utiliza-
tion of shared resources. Historically access control
has been defined in terms of < subject, object > tu-
ples and access control matrices. Typically the ma-
trix is indexed by the name of the user (the sub-
ject) and by the resource that needs to be protected
(the object). The intersection of this pair contains
a Boolean value that indicates whether the access
is allowed or denied. (The method is usually en-
coded implicitly in the Boolean value.) For example,
Unix file systems use 3 bits to encode various com-
binations of read, write, and execute permissions for
files. However, this matrix method of implementa-
tion is not sophisticated or flexible enough and does
not scale when the systems serve a large number of
users with a large number of resources.

The security policy associated with an access
control mechanism refers to the characteristics of
its specification, implementation and enforcement.
Four different types of access control policies have
been defined in literature. They include Manda-
tory Access Control(MAC), Discretionary Access
Control(DAC), Double Discretionary Access Control
(DDAC) and Role Based Access Control (RBAC).

The simplest form of access control is DAC.
The matrix model is an implementation of this
type of policy. Typically a DAC policy imple-
mentation maintains an indexed list of allowed
< subject, object, operation > triples. DDAC main-
tains two lists, an “allowed list” similar to DAC and
a “denied list”. MAC policies use the concept of la-
beling. MAC is used by trusted operating systems,
and every entity in the MAC system is assigned an
immutable label. A hierarchy is defined in terms of
these labels, and access control is enforced by com-
paring the labels. Subjects with higher labels have
access permissions over objects with equal or lesser
labels using a “no read up, no write down” rule [6].
This hierarchy strictly controls the flow of informa-
tion.

Among these, RBAC is the most flexible type of
access control policy [14]. All RBAC subjects are
assigned roles. Each role represents a particular set

of objects and the allowed operations on each object.
The major benefits of this aggregation are the con-
siderable saving in terms of space and simplification
in terms of management and enforcement. RBAC al-
lows users to create policies with more sophisticated
specifications than simple DAC, DDAC or MAC. A
single user may have many different roles, and differ-
ent permissions depending on the current role. Dif-
ferent constraints related to role and privilege may
be enforced in RBAC.

Traditional systems provide a static implementa-
tion of any one of these access control mechanisms.
Different applications with different access control
policies cannot co-exist. Typically, applications can-
not be ported across different systems without com-
promising the security guarantees offered by their
access control mechanisms.

2.2.2 Policy framework

The policy framework itself is a hierarchy of classes
as shown in Figure 2. It is dynamically configurable
and extensible. The classes at the bottom of the
framework are mostly abstract, and are mainly used
to represent mathematical concepts such as sets and
mappings. These classes form the basis for a hier-
archy of successively specialized classes representing
concepts such as labels and access control lists. Fi-
nally, at the top of the framework are classes, which
can be used to represent a variety of generic policy
forms [13].

Any policy framework that places a heavy burden
on its users has never been popular. With this in
mind, our policy framework GUI makes the process
of creating new policies for ordinary users as pain-
less as possible. Typically, to create new ACs, most
users will simply select from a list of predefined poli-
cies or will use default settings chosen by a system
administrator. However, it is necessary for system
administrators and expert users to create and mod-
ify policies that respond to specific application needs
or security threats. Therefore, our policy framework
supports the enforcement of predefined policies ef-
ficiently and effortlessly, and also provides a con-
venient interface for policy authors to create more
sophisticated, customized, and situational policies.

The policy framework supports all the following
common types of access control: Mandatory(MAC),
Discretionary (DAC), Double Discretionary(DDAC),
and Role-based(RBAC). It is easy to extend our
object-oriented framework to create more fine-
grained, application specific policies. ([8] provides

14

MAC RBAC

ON) Interfaces

Primitives

Figure 2: Component-level Map of the Policy Frame-
work

several good examples). In our model, we can spec-
ify not only the < subject,object, operation > ac-
cess control triple, but we can also include a resource
limit on usage, situational decision rules, constraints
and dependencies, e.g., based on current time of day
or current role of the principal. The policy frame-
work also lets users specify pre-conditions and post-
conditions. Pre-conditions allow necessary security
checks to be performed before evaluation takes place,
and post-conditions can be used to maintain state
and to perform additional checks after evaluation has
been completed and when more information becomes
available. The central feature of this framework is
that the administration of these policies is built into
the active capability and the underlying architecture
itself. The section on AC management explains this
process in detail.

2.3 Evaluation/Enforcement Engine

This section describes the evaluation/enforcement
engine component of our architecture. Figure 3
shows a pictorial representation of this component.

The evaluation/enforcement engine consists of an
AC cache, run-time resolvable references to cus-
tomizable AC evaluation sandboxes, and run-time
resolvable references to a customizable, componen-
tized software framework. The AC cache is used to
cache capabilities that do not change very often and
provides a fast processing path for commonly used

Customizable
AC Evaluation
Sandbox

AC cache

Customizable
Software

Framework

Components

Figure 3: Evaluation and Enforcement engine

or default mechanisms and policies. Different AC
types require different contexts. By providing the
run-time resolvable references, we can download the
software components that form the context from a
trusted repository. A sandbox is a restricted exe-
cution environment and imposes static and dynamic
constraints on the code that runs inside it. A typical
example of a sandbox is the Java applet execution
environment. This sandbox prevents arbitrary mo-
bile Java bytecode from accessing most of the local
files, sensitive data and critical applications.

The sandbox required for the administrator can
also customize the evaluation of the ACs or trusted
applications. The entire evaluation/enforcement en-
glne needs to be secured in some way. It can run as
a process with superuser privilege and create a cryp-
tographically secured channel to communicate with
the AC management infrastructure. This channel
can be used to obtain the ACs and the downloadable
framework and sandbox components. Alternatively
it can also be a part of the kernel of a traditional
or extensible operating system. The enforcement is
done after evaluation. The evaluation/enforcement
engine can subsume the concept of a traditional
reference monitor. Typically when the application
makes a call that accesses a specific resource or re-
quires the use of a specific mechanism, the request
is encapsulated and passed to the evaluation engine.
The engine builds the context and evaluates the AC

15

associated with the policy or mechanism requested
by the application. Depending on the result of this
evaluation, the application is either granted or de-
nied the access to the resource or allowed to use the
mechanism it requested. To support the enforce-
ment, this engine must export an interface that al-
lows or forces applications to redirect their request
to resources and mechanisms through itself. In addi-
tion, the engine must either notify applications that
the access is denied or forward allowed requests to
the appropriate resource, thereby implementing the
policy specified in the AC.

2.4 AC Management

AC Administrator
Software
AC Server Framework
Component
Repository

Figure 4: AC management infrastructure

The AC Administrator is equivalent to a trusted
third party as in a traditional security model. It
is responsible for validating and attesting to the in-
tegrity of the active capabilities. For example, us-
ing a public key infrastructure(PKI), the AC ad-
ministrator can sign ACs using its private key,
and other entities, like applications and evalua-
tion/enforcement engines, can perform verification
using the public key of the AC Administrator. Typ-
ically it is also responsible for the creation of the
capabilities using the interface provided by the soft-
ware framework. Although ACs can carry arbitrary
code, the creation interface provided by the frame-
work can restrict the capabilities to well-formed ex-
pressions and can perform static type checking and

verification to make sure that the code in the AC
cannot compromise the security of the underlying
system. The run-time behavior of ACs is restricted
by the sandbox, which limits their access rights and
resource utilization. In addition, the communication
channel between the administrator and the evalua-
tion/enforcement engine needs to be secure. The
AC administrator itself may be implemented as one
centralized entity, or its functionality can be dis-
tributed throughout the protection domain. There
may be multiple instances of the AC administrator
to achieve load balancing, scalability and fault tol-
erance. The AC server acts as a front-end to an AC
Administrator’s AC repository. This server may be
a part of the administrator or may be another en-
tity, closely coupled with the functionality of the AC
Administrator.

3 Applications

In this section we describe some application scenar-
ios that highlight the benefits of using our system.
One example we have chosen uses ACs to provide dy-
namic countermeasures against intrusions. In a typ-
ical system, when an intrusion or possible intrusion
is detected, a security alert is issued. This security
alert needs to be issued promptly at runtime with-
out interrupting normal service. This may result in
modifying the security policy at the compromised
node and its neighbors, activating additional secu-
rity measures, imposing additional auditing schemes
and more restrictive security policies.

Consider the network configuration shown in Fig-
ure 5. In this figure, one or more compromised nodes
are isolated from the rest of the network and a dy-
namic firewall is built around them. All nodes that
are directly connected to the compromised node are
sent ACs to change their existing access control and
security mechanisms to minimize the risk of compro-
mising the rest of the nodes in the network.

The traditional way of dealing with intrusion re-
lies on detecting patterns of abnormal or suspicious
behavior. Using pattern matching and analysis, or
data mining etc., intrusion detection systems define
a fixed set of countermeasures that attempt to mini-
mize the damage. One drawback of this approach is
that it is very hard to prepare in advance the coun-
termeasures for every kind of attack. Since there
is no way to prepare for every kind of intrusion, the
fixed set of countermeasures and policies for the fire-
wall nodes needs to be updated very frequently. In

16

‘ Dynamic Firewall Node
. Compromised Node
O Regular Node

Figure 5: Dynamic Countermeasures for Intrusion

existing systems the overhead associated with this
operation is substantial. Using our low-overhead
system we can define dynamic policies customized
to a particular attack or possible attack, which can
be triggered and enforced by suspicious behavior. A
static policy that denies all accesses is too restric-
tive. In many cases it may be worthwhile to adopt
customized countermeasures and allow the services
that are not compromised to continue. If we detect
an intrusion that requires more drastic countermea-
sures, we can change the security level of the whole
system by installing restrictive ACs on each node, for
example by changing the current policies to MAC or
by disabling a particular service or application.

Active capabilities can also be used to perform
distributed computation. The results of this com-
putation can be used to enforce situational policies.
Using a weighted trust model, described in [12], ap-
plications can assign weights to different entities that
reflect upon their “level” of trust in the system. The
AC can evaluate the trust level for a specific entity
and enforce the policy specific to that trust level.
Thus the administrators may dynamically force ap-
plications to change their policies and mechanisms
based on changing trust levels and force applications
to adapt protective measures against nodes on less
trustworthy paths.

Another example is a mobile computing environ-

ment where users wearing a network of mobile de-
vices enter a smart room that has its own indepen-
dent security mechanisms and policies. In order to
use the services available in that room, these users
have to adapt their network’s applications and poli-
cies and use the underlying security infrastructure.
The need to integrate seamlessly the mobile system
with the smart room security infrastructure implies
that the mobile users must adapt to the security
policies of the smart room and vice versa. The ad-
ministrators use ACs to customize the user, device,
network or smart room security profile to enforce
these policies at run time.

4 Implementation

Based on the location of the evaluation/enforcement
engines we have identified three specific implemen-
tation models of our architecture. In the first
model, the evaluation/enforcement engines are im-
plemented in the kernel of the system. The engines
reside and execute in protected address space. In
the second model, the engines reside in the software
framework itself. For example, the engine can be
built in a JVM(Java Virtual Machine or Java run-
time environment) as a sandbox and can manage
access to Java objects and Java security policies and
mechanisms. This model relies heavily on the secu-
rity and safety features of the software framework
itself. In the third model the engines reside and exe-
cute in separate, independent user space, and the
system protects them from unauthorized accesses
and is responsible for enforcing the behavior of these
engines.

In this section we describe two specific implemen-
tations of the above three models. The focus of the
Cherubim?! project [2] is to provide dynamic secu-
rity support in CORBA for mobile computing that
allows frequent migration of computers in and out of
security enclaves and that facilitates wide area col-
laboration by creating dynamic sessions that stretch
across organizational boundaries. In Cherubim, the
ORB is in user space and is assumed to be trusted.
This implementation belongs to the third model.
The Seraphim? project [3] defines a dynamic, inter-
operable, flexible, composable security architecture
for active networks. We implemented a reference
monitor in the NodeOS to control NodeOS accesses.

The Cherubim software release is available
http://choices.cs.uiuc.edu/Security /cherubim /software/
2Contact authors for the Seraphim software release

at

17

! : Application ; T Object
L SEE LRI R 1 L e
: . :
:]Z"V:I - Server yveres
\capuvitibes | i o b
3 1 A
IDL IDL
/\/\
Stub 1 " Skeleton

=

'~ Crypto Policy

:

Py

E AC Manager
|

\

4

Y s

Cryptographic
Policy Server

Figure 6: Object Access in Cherubim

This implementation belongs to the first model.

4.1 Cherubim

The design of the Cherubim security architecture
[11] consists of two major parts: CORBA compli-
ant security services with a security enhanced IDL
(Interface Definition Language) providing applica-
tion level security interfaces, and an agent based dy-
namic security framework implementing these stan-
dard interfaces. Adopting OMG’s general security
reference model and Security Service Interfaces gave
us an open architecture to incorporate a wide va-
riety of security policies and services. In addition,
Cherubim aims to provide fast technology evolution
and deployment for both user applications and secu-
rity functions. Using the standard CORBA security
services and a security extended OMG IDL provides
the necessary basic facilities to achieve this and eas-
ily separates security functions from the main ap-
plication functions. In general, this design provides
better extensibility and configurability for both ap-
plications and their security features. It also enables
wide area software integration with configurable se-
curity enforcement. Figure 6 briefly illustrates the
process of secure object invocation in Cherubim inte-
grated with CORBA security services. The numbers
in the figure show the sequential processing steps for
a client request.

As in the OMG model, Cherubim defines a prin-
cipal as a human user or system entity that is reg-
istered in and authenticated to the system. It may
have one or several identities, which we call roles
in Cherubim. Each role may have different privi-
lege attributes used in making access control deci-

sions. All the information about roles and privilege
attributes of a principal is maintained in a secure
store object that is called a credential. In Cherubim,
credentials may be embedded in the active capabil-
ities to support delegation and to facilitate efficient
access control. Objects, policies, and services are
organized into security domains, each of which de-
fines a distinct scope with a common set of security
policies and mechanisms. In each domain there is a
security authority, which we implemented as a pol-
icy server with administrative interfaces to security
policies in Cherubim. A domain may also be divided
into sub-domains to form a security domain hier-
archy. To inter-operate between security domains,
inter-domain security policies need to be defined and
enforced. In addition Cherubim has developed a pol-
icy representation framework with role extensions to
provide interoperability with RBAC policies while
allowing extensibility. One of the major drawbacks
of this approach is that OMG CORBA security ser-
vices are implemented and enforced in user space. It
is possible to make stronger guarantees if an ORB
can be securely protected.

4.2 Seraphim

Active networks [17] aim to provide a software
framework that enables network applications to cus-
tomize the processing of their data. Applications
encapsulate the methods that manipulate the data,
with or without the data itself, and inject these
capsules into the network. Active routers install
and execute these capsules on the data dynamically,
thereby facilitating fast protocol and service deploy-
ment. Securing this infrastructure against threats
and exposures remains a major challenge in this
paradigm.

In order to exploit fully the expressive power of
the underlying active network, we felt the need for a
unified security framework that allows users or ap-
plications to create and enforce their own security
mechanisms, similar to customizing their own com-
munication protocols. Seraphim [3] is a prototype of
a dynamic, fully extensible, inter-operable, security
architecture, based on, and built into the underlying
active network architecture. This architecture allows
active network routers to be configured with only a
minimal set of security functions. These functions
are recursively used to install and support the secure
deployment of new security mechanisms. For in-
stance, sophisticated and application or user specific
security functions may be installed at run time using

18

ANTS PLAN CANES
EE EE |®@®@®| EE
EE
Management \ \ f
EE
NodeOS
. T~ ¥
Seraphim
Security
Refer.encc Proxy
Monitor
|
4 R
NodeOS
Resources

?

Figure 7: Secure Active Network Node

a secure recursive reconfigurable bootstrap process.
Currently, our framework provides mechanisms to
dynamically specify, separate and enforce a number
of different, often mutually exclusive access control
policies. In addition we allow applications to encap-
sulate credentials and to encode situational policies
to alter or revoke dynamically existing access control
rules and mechanisms. Applications construct cap-
sules, which use this software environment as con-
text and inject customized security policies into the
routers.

The major components of our Seraphim architec-
ture and their interaction, in the context of the ac-
tive network architecture are shown in Figure 7.

The key component of this architecture is the
reference monitor. This is similar to the evalua-
tion/enforcement engine in the general architecture.
Currently the reference monitor is implemented as
a co-located extension to the NodeOS. Every node
has a reference monitor through which all accesses
to node resources occur. The policy framework is
the software framework component. As mentioned
earlier, the policy framework itself is reconfigurable
and can be downloaded dynamically when required.
Applications or administrators use the interface pro-
vided by this policy framework to create ACs that
encode the type of access control policy and other
constraints used in the access control decision mak-
ing process.

5 Performance

In this section we describe some experiments we im-
plemented in our Seraphim system. Although our
prototype implementation was not built for perfor-
mance, we did make some preliminary performance

I

System Configuration | Ave. RTT (ms) |

Node B

L A‘(‘JNJSV;rver]

Figure 8: Ping Application Experiment in Seraphim

measurements. We also present a discussion on
the overheads incurred in our system. In order to
write applications for our Seraphim system, we de-
veloped SAINTS (Secure Active Inter-operable Net-
work Toolkit System) which is based on the ANTS
toolkit [16]. The original ANTS Node class was
split into distinct NodeOS and EE classes and we
added our reference monitor between the EE and the
NodeOS. Our SAINTS is backwards compatible with
ANTS and can run original ANTS applications. The
next few subsections summarize the performance re-
sults for Ping, Gnipper and dynamic policy change
applications. This is followed by a subsection that

discusses strategies for reducing some of the over-
heads.

5.1 Ping Application

The first experiment measures the performance over-
head associated with the modified version of the
ANTS Ping application. The experimental setup
is shown in Figure 8. The numbers in the figure
show the sequence of steps in the transmission of an
ANTS Ping capsule. The communication between
the AC server and the active node is through TCP.
We used three Sun SparcStation 10 machines for the
active nodes and a Sun Ultra-60 machine for the AC
server. All four machines are on the same 100Mbps
Ethernet LAN.

We used four different system configurations to
measure the performance. Our measurements ex-
clude the time to load dynamically the active Ping
protocol in active nodes. The first configuration,
“No RM?”, is the baseline. In this configuration
the Seraphim reference monitor was installed in the
NodeOS of all the active nodes, but was bypassed
and no access checks were performed. The sec-
ond configuration, “RM without Cache”, was the
most straightforward configuration and used the

19

. No RM 10
- RM without Cache 1494
{ 1 RM with Cache 21
Active ~Active RM with Decisions in Cache 10
Node C

Table 1: Performance Data for Ping Application

Seraphim reference monitor. In this configuration
a reference monitor was installed in all the active
nodes, and every time a Ping capsule arrived, one
access check was performed. There was no cache
in the reference monitor. The reference monitor at
each node had to contact the AC server to retrieve
the proper AC and to evaluate it for each access
check. The third configuration, “RM with Cache”,
was an improvement over the second configuration.
Again, the reference monitor performed one access
check for each arriving capsule, but in this case the
proper AC was cached inside the reference monitor.
Here the reference monitor did not need to contact
the AC server at all. The final configuration, “RM
with Decisions in Cache”, caches the reference mon-
itors evaluation result of the AC. When the AC does
not change and the inputs to the AC are the same as
to the previous evaluation, a prior cached evaluation
value can be used. Each access check in this config-
uration involved simply a cache lookup, without the
dynamic evaluation of the AC.

In all configurations, 2000 capsules were sent out
from the Ping application and the interval between
the Ping capsules was 200ms. We measured the av-
erage round trip time (RTT) of the Ping capsules.
Table 1 shows the results of our experiment.

We observed that the most inefficient implementa-
tion of our architecture is the “RM without Cache”
configuration. It has much larger overhead than the
base case. When the simple caching scheme was
used, the average RTT was approximately twice the
base RTT value. When we further assumed that the
result of AC evaluation can be cached, average RT'T
was same as in the base case. This result suggests
that by employing suitable optimization techniques,
the overhead of our Seraphim architecture can be re-
duced to an acceptable level. The overhead of check-
ing that the inputs to the AC had not changed and
the Ping capsule certificate was the same as that of a
previous capsule was negligible. Further research is
required on different caching schemes and optimiza-
tion strategies.

5.2 Gnipper Application

Another experiment we developed in Seraphim is
the Gnipper application. This application demon-
strates the creation of dynamic protection domains
or enclaves. In this application, we create Gnipper
vaccine, or an anti-Ping AC. This vaccine is used
to disable one user’s ability to ping an active node.
This vaccine is installed at the reference monitor of
the active node that needs the protection. The vac-
cine dynamically moves one-hop at a time toward
the source of the Ping, in response to Ping requests
from the original sender. This is best explained with
an example presented next.

_ - YACCINE

GNIPPER
VACCINE

ONodc G

Node E Node F

Figure 9: Gnipper Application

The example is shown in Figure 9. We create a
vaccine and install it at the reference monitor of
Node D. The vaccine is an AC which disables the
ability of user U at Node A to ping Node D. User
U sends a Ping capsule with destination address of
Node D. When the capsule arrives at Node D, Node
D drops the capsule and propagates the vaccine to
the previous node, Node C. Now Node C is vacci-
nated. When user U sends another Ping capsule to
Node D, the capsule will be dropped at Node C and
the vaccine will be installed at Node B.

The exact node which drops the Ping capsule
changes dynamically depending on the the number
of Ping capsules sent by the source. By installing
successively the vaccine at the nodes on the Ping
path between Node A and Node D, we have suc-
ceeded in building a dynamically growing firewall
around D, and also reduced the traffic and moved
any denial of service attack away from the intended
victim.

This experiment used the same setup as for the
Ping application. The average overhead for an appli-
cation running on a Sun SparcStation 10 machine to
create a vaccine and install it at another Sun Sparc-
Station 10 machine on the same local Ethernet LAN
was measured as 77ms. Without creation, the aver-

20

age time to send a vaccine and install it under the
same setup took 34ms.

This experiment can be extended to build agile
and dynamic firewalls that can react to attacks at
runtime. When an active node or trusted agent de-
tects attempted attacks, it can send out an active
capability carrying a “warning” message with the
appropriate vaccine, to build a dynamic line of de-
fense against outside attacks, or to raise the level of
security within the domain. When the threat is gone
the active node or the trusted agent can send out an-
other active capability to resume normal operation.
This can be used as a very powerful security tool
in conjunction with intrusion detection and counter-
measure systems.

5.3 Dynamic Policy Change

Our policy framework can dynamically change be-
tween policy types, for example, from RBAC to
MAC. Section 3 mentions an application that can
benefit from such a change. We measured the over-
head associated with this change using our existing
system. For a simple domain with 5 users, 10 objects
and 5 operations, changing from RBAC with 5 roles
to a MAC with 2 security levels cost about 667ms
on an average using a Sun Ultra-60 machine. We
have identified several places for optimization and
further research is planned to reduce this overhead
considerably.

5.4 Secure Multicast Application

A secure multicast application for active networks
was implemented in Seraphim. Traditional secure
multicast uses session keys to enforce secure data
transmission and delivery. When a new member
joins a secure multicast group, the sender sends the
current session key to the new member so that it can
receive data. When a member leaves the group, the
session key has to be changed, to prevent eavesdrop-
ping. The sender has to generate a new session key
and transmit it to all the remaining members.

In our secure multicast example, joining and leav-
ing are both very simple. When a new member joins
the group, a new AC is created for this member. The
enforcement engine for this new member will get the
new AC only when it needs this AC. When a mem-
ber leaves the group, the AC administrator sends a
simple revocation AC to the enforcement engine for
this leaving member. The overhead is much smaller
than traditional secure multicast systems.

5.5 Discussion

In traditional systems, access control is defined by
policy and is enforced by enforcement engines such
as reference monitors in operating systems and fire-
walls in networks. Individual policies can be defined
at each enforcement point and managed separately.
For example, each firewall in a company can be con-
figured individually to set up a set of rules defined
by policy. When there is a policy change, a human
administrator can identify the affected firewalls, sus-
pend and reconfigure them to enforce the new pol-
icy. If there are many firewalls and frequent policy
changes, then this approach is not scalable.

An alternative approach is to have a central-
ized policy administrator. The policy administra-
tor maintains all policy information for the whole
system, and is responsible for distributing policy to
individual enforcement engines. When there is a pol-
icy update, the policy administrator can distribute
the new policy to the enforcement engines. Usually
the policy administrator does not know in advance
where the new policy is going to be used, so the ad-
ministrator may have to distribute the new policy
throughout the whole system. For example, when a
new user is added into the system, the access priv-
ileges for this new user needs to be distributed to
all enforcement engines. Also when there is a revo-
cation of an existing policy, the revocation informa-
tion needs to be distributed to all the enforcement
engines. In some environments, such as the Cisco
Secure Policy Manager for firewalls [5], enforcement
engines are suspended in order to update policies.
In traditional systems, policy update is often com-
plicated and the overhead is large.

In our architecture, we also have a centralized AC
administrator per domain. However this entity may
be replicated for fault tolerance and load balancing.
The AC administrator keeps track of the location of
ACs in the system. When there is a policy change,
this causes the ACs to change and the old ACs have
to be revoked. The AC administrator sends changed
ACs to only those enforcement engines that have the
old ACs. When there is a policy change which causes
addition of new ACs, the AC administrator does not
need to send out anything. When the enforcement
engine receives access requests from applications for
the first time, it asks for these new ACs from the AC
administrator and caches them. Therefore the over-
head is for first time use only, and there is no system-
wide distribution overhead. An overhead introduced
by our approach is the need to maintain information

21

in an AC server about the location of the ACs. Since
the centralized computation time usually is smaller
than any network delays, the maintenance overhead
is much smaller than the extra network overhead of
a traditional system.

Sometimes it is difficult for the AC server to keep
track of ACs for revocation. In such cases ac-
tive applications can get ACs from the AC server,
and distribute ACs by themselves. For example, in
our Seraphim implementation, applications can en-
code ACs into active capsules, and distribute them
through active networks along with active capsules.
Applications do not need to know the details of the
policy framework and the AC contents. In this way
the system can provide very fine-grained customized
policies for applications. One simple way to accom-
plish revocation is to use a time-out. Another solu-
tion is to broadcast the revocation information, as
in traditional systems. In either case, the overhead
is no larger than traditional systems.

6 Conclusions

In this paper we propose an agent based security
architecture that allows applications to create cus-
tomized and situational policies. The motivation for
this architecture is that different applications (users
or devices) tend to have widely different require-
ments in terms of security policies and mechanisms.
The traditional model of security is very static and
cannot support different mechanisms and policies, or
change between these policies and mechanisms dy-
namically.

In our system, applications use the expressive
power of our software framework and the flexi-
ble nature of our infrastructure to create mobile
agents called active capabilities (ACs). These ACs
actually carry the customized policy to evalua-
tion/enforcement engines where they are evaluated
in a sandbox-like environment and the result of this
evaluation is enforced on the applications. The AC
management infrastructure defines a trust model for
the interaction of various components and manages
the creation and distribution of ACs.

The security framework and the evaluation and
enforcement engines are composable and extensi-
ble and require only a minimal set of functions
and mechanisms to be installed. Additional mech-
anisms and policy implementation components can
be downloaded dynamically using a secure commu-
nication channel. The overhead of managing policies

and mechanisms is very low as this can be handled
by the ACs. AC simplifies key management and dis-
tribution, making our approach very scalable.

References

[

[2]

(10]

(11]

[12]

Roy H. Campbell, M. Mickunas, Tin Qian, and
Zhaoyu Liu. An agent-based architecture for sup-
porting application aware security. In the Workshop
on Research Directions for the Next Generation In-
ternet, May 1997.

Roy H. Campbell and M. Dennis Mickunas. An
agent-based architecture for supporting applica-
tion aware security. an accepted proposal to
DARPA BAA9704, 1997. Also see the web site at
http://choices.cs.uiuc.edu/Security/cherubim/.

Roy H. Campbell and M. Dennis Mickunas. Build-
ing dynamic interoperable security architecture
for active networks. an accepted proposal to
DARPA BAA9803, 1998. Also see the web site at
http://choices.cs.uiuc.edu/Security /seraphim/.

Roy H. Campbell and Tin Qian. Dynamic agent-
based security architecture for mobile computers.
In the Second International Conference on Parallel
and Distributed Computing and Networks, Brisbane,
Australia, December 1998.

Cisco Systems, San Jose, CA. Cisco security man-
ager tutorial, DOC-786905, 1999. Available at
http:/ /www.cisco.com/warp/public/cc/cisco/mkt
/security /csm.

D. Denning. Cryptography and Data Security.
Addison-Wesley Publishing Company, 1982.

David Evans and Andrew Twyman. Flexible policy-
directed code safety. In IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, May 9-12 1999.

Tim Fraser. An object-oriented framework for secu-
rity policy representation. Master’s thesis, Depart-
ment of Computer Science, University of Illinois at
Urbana-Champaign, December 1996.

George C. Necula and Peter Lee. The design and
implementation of a certifying compiler. In PLDI
"96.

George C. Necula and Peter Lee. Safe kernel exten-
sions without run-time checking. In OSDI ’96.

Tin Qian. Cherubim agent based dynamic secu-
rity architecture. Technical report, Department of
Computer Science, University of Illinois at Urbana-
Champaign, June 1998.

Tin Qian. Dynamic authorization support in large
distributed systems. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-
Champaign, December 1999.

22

(13]

[14]

[15]

[16]

[17]

Vijay Raghavan. On the design and implentation of a
security policy adminstration for a dynamic security
system. Master’s thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign,
May 1999.

R. S. Sandhu and E. J. Coyne. Role-based access
control models. IEEE Computer, 29(2), February
1996.

Dan S. Wallach. A new Approach to Mobile Code
Security. PhD thesis, Department of Computer Sci-
ence, Princeton University, January 1999.

D. Wetherall, J. Guttag, and D. Tennenhouse.
ANTS: a toolkit for building and dynamically
deploying network protocols. In IEEE OPE-
NARCH’98, San Francisco, CA, April 1998.

D. Wetherall, U. Legedza, and J. Guttag. Intro-
ducing new internet services: Why and how. IEEE
Network Magazine, July/August 1998.

APPENDIX B

Seraphim: Dynamic Interoperable Security Architecture for
Active Networks*

Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad Naldurg, Seung Yi
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
{roy, zhaoyu, mickunas, naldurg, seungyi }Qcs.uiuc.edu

Abstract

Security s an tmportant concern in the active networking
paradigm because a breach in security can quickly compro-
mise many systems in the network. This paper describes
an extensible, reconfigurable security architecture that is
flexible and accommodates a wide variety of security poli-
cies and mechanisms. It provides applications and users
the ability to create and enforce highly customized and
situational policies dynamically, and is well-suited to the
security issues in active networks.

Seraphim [7] implements this architecture and allows
the creation of dynamic security policies. Innovative ap-
plications use these policies in an exploration of the na-
ture and scope of “dynamic security”. The implementa-
tion facilitates research of interoperability and portability
security issues. Based on the experience from this effort,
we are tnvestigating a unified model for security mecha-
nisms that preserves security guarantees across domains.
Keywords: active networks, security, policy, access con-
trol, active capability, reference monitor, interoperability,
dynamic, reconfigurable

1 Introduction

Active networks aim to provide a software framework that
enables network applications to customize the processing
of their communications. Applications encapsulate the
methods that manipulate the data, with or without the
data itself, and inject these capsules into the network.
Active routers install and execute these capsules on the
data dynamically, thereby facilitating fast protocol and
service deployment. Securing this infrastructure against
threats and exposures remains a major challenge in this
paradigm.

The traditional definition of security includes authen-
tication, access control, and encryption. Active network
applications and routers can establish a basis for trust
through mutual authentication. Encryption and digital
signatures can protect the privacy and integrity of the
active network capsules that contain code and data. Ac-
cess control mechanisms and security policies can provide

*This research is supported by DARPA F30602-98-1-0192

23

controlled access to router resources and routed code and
data. Much security research for active networks focuses
on providing a secure environment for the routers that
primarily

e prevents malicious behavior of arbitrary user code
and

e protects the user code and data from malicious
routers [22].

Research at MIT identifies the use of active networks
to locate and neutralize the source of unwanted network
traffic like ping and ack packets [25]. This kind of applica-
tion of active networks suggests the possibility of develop-
ing “active security”, programmable security policies and
mechanisms that respond dynamically to the activities on
the network.

Our research complements these efforts and emphasizes
the possible applications of active security in an active
network. In the course of our research, we have studied
applications of active security to the issues of interop-
erability and dynamic security policies. Most existing
security provisions, especially regarding policies and ac-
cess control, are static in nature. Once a security sys-
tem is deployed within a network, the provisions are dif-
ficult to change and modify dynamically. For example,
most security systems cannot change security policy im-
plementations in response to a successful security attack.
Though a wide range of security policy types have been
proposed, most systems implement a common subset of
these policies and mechanisms. Applications that require
sophisticated security requirements and customized secu-
rity policies must use lesser or weaker security guarantees
provided by the deployed static security system. In the
spirit of the motivation for developing active networks,
our approach provides a unified security framework that
allows users or applications to create and enforce their
own security provisions and policies, similar to customiz-
ing their own communication protocols. We identify two
example application scenarios that benefit from such flex-
ible security support:

e Dynamic Firewall Formation: The creation of dy-
namic protection domains or enclaves is very useful

in many situations. In this way, a security system
can build agile and dynamic firewalls in reaction to
the detection of a security attack, thereby isolating
the target of the attack from its attacker. When
an active security administrator or trusted authority
detects intrusion, it can send out an active capsule
carrying a security agent with the appropriate vac-
cine. This can be used to build a dynamic line of
defense against outside attacks and to raise the level
of security within the domain. When the threat dis-
appears the administrator or trusted authority can
transmit another active capsule in order to resume
normal operation. This can be used as a very pow-
erful security tool in conjunction with intrusion de-
tection and countermeasure systems.

e Secure Emergency Multicasts: Emergency notifica-
tion of events like a storm warning must be secure
to be effective. We describe a “geo-casting” scheme
to alert or warn subscribers about natural disasters
like tornadoes passing through a geographic region.
A multicast group is formed using dynamic join and
leave, based on geographic information. As the tor-
nado moves, the multicast group can move along
with it by adding and removing appropriate receivers
in real time, using a fast join and leave. Active cap-
sules can be sent to meteorological “subscribers” in
a larger area, or to mobile users to warn that they
are entering a danger area. Active security is used
to reduce false alarms and to prevent unauthorized
use of the system.

In this paper, we present a dynamic, fully extensible,
interoperable security architecture based on and built into
the underlying active network architecture. This archi-
tecture allows the configuration of existing active net-
work routers with only a minimal set of security functions.
These functions are used to recursively install and sup-
port the secure deployment of new security mechanisms.
For instance, sophisticated and application-specific or
user-specific security functions may be installed at run
time using a secure recursive reconfigurable bootstrap-
ping process. Currently, our framework provides mecha-
nisms to specify, separate and enforce a number of differ-
ent and often mutually exclusive access control policies
dynamically. In addition we allow applications to en-
capsulate credentials and to encode situational policies
that are authenticated by a trusted policy server to add,
alter or revoke existing access control rules and mech-
anisms dynamically. Applications write active network
code which uses these credentials and policies to inject
customized security into the routers. Much of the archi-
tectural framework has been built and tested in Seraphim
[7, 16]. Thus, applications may choose an access con-
trol policy and enforce this policy on their active network
code. The framework can provide consistent security pol-
icy guarantees and platform independent enforcement of
security policies across all active routers.

Section 2 of the paper gives a brief overview of the im-

24

portant terms and presents a self contained tutorial on
some of the background material. Section 3 describes our
architecture and talks about its place in the general ac-
tive network architecture. Section 4 focuses on the imple-
mentation of the reference monitor and its flexible policy
framework. This allows us to create and enforce dynamic
policies. Section 5 talks about our testbed implementa-
tion and some of the experiments that we have performed
using our testbed. Section 6 talks about related work and
the final section talks about our conclusions.

2 Background

Although our research investigates dynamic security pro-
visions for all aspects of security including authentication,
access control, and encryption, in this paper we empha-
size access control. Access control is the mechanism by
which a security system exercises control over the access
and utilization of shared resources. Historically access
control has been defined in terms of < subject, object >
tuples and access control matrices. Typically the ma-
trix is indexed by the name of the user (the subject)
and by the resource that needs to be protected (the ob-
ject). The intersection of this pair contains a Boolean
value that indicates whether the access is allowed or de-
nied. (The method is usually encoded implicitly in the
Boolean value.) For example, Unix file systems use 3 bits
to encode various combinations of read, write, and exe-
cute permissions for files. However, this matrix method
of implementation does not scale to systems that serve a
large number of users with a large number of resources.

The security policy associated with an access control
mechanism refers to the characteristics of the security
that it enforces. A variety of types of access control poli-
cies have been defined in the literature including Manda-
tory Access Control{MAC), Discretionary Access Control
(DAC), Double Discretionary Access Control (DDAC)
and Role Based Access Control (RBAC).

The simplest form of access control is DAC which may
be represented directly by the matrix model. Typically a
DAC policy implementation maintains an indexed list of
allowed < subject, object, operation > triples. Unix file
system permission is a simplified example of a DAC pol-
icy. DDAC maintains two lists, an “allowed list” similar
to DAC and a “denied list”. MAC policies use the con-
cept of labeling. A military example of labeling has labels
“Top Secret”, “Secret”, “Confidential”, “Classified” and
“Unclassified”. MAC is used in trusted operating sys-
tems. Every entity in the MAC system is assigned an
immutable label. A hierarchy is defined in terms of these
labels, and access control is enforced by comparing the la-
bels. Subjects with higher labels have access permissions
that allow them to write to objects with equal or greater
labels only. Subjects with lower labels cannot read from
objects with higher labels. This is often called the “no
read up, no write down” rule [11]. This hierarchy strictly
controls the flow of information.

Among the policies listed, RBAC is the most flexible

type of access control policy [23]. All RBAC subjects are
assigned roles. Each role represents a particular set of
objects and the allowed operations on each object. The
major benefits of this aggregation are the considerable
saving in terms of space and simplification in terms of
management and enforcement. RBAC allows users to cre-
ate policies with more sophisticated specifications than
simple DAC, DDAC or MAC. A single user may have
many different roles, and different permissions depending
on the current role. Different constraints related to role
and privilege may be enforced in RBAC.

Traditional systems provide a static implementation of
any one of these access control mechanisms. For example,
system security cannot be dynamically changed from a
DAC policy to a MAC policy. Different applications with
different access control policies cannot co-exist. Typi-
cally, applications cannot be ported across different sys-
tems without compromising the security guarantees of-
fered by their access control mechanisms.

3 The Architecture

This section gives a brief overview of the basic active
network architecture [6] as proposed by the architecture
working group to provide a context for our security ar-
chitecture. The software on an active router consists of
three distinct, functionally separate layers: the applica-
tion, the EE (Execution Environment), and the NodeOS.
The NodeOS is similar to the kernel of traditional oper-
ating system. On an active network router, this compo-
nent also performs resource allocation and management.
Typical resources include shared memory, communication
channels, and routing tables. The EE runs on a NodeOS
and provides an interpreter for capsule code. An EE be-
haves like a user shell that has access to and can manip-
ulate routing tables and packets. The EE provides an
interface for accessing the NodeOS resources. Applica-
tions create capsules that include both the code to run
on the EEs and communication data. The active net-
work installs and executes the capsule code dynamically
on remote routers.

Following is a brief and self-contained overview of our
security architecture which is called Seraphim. The major
components of our architecture and their interactions in
the context of the active network architecture are shown
in Figure 1.

The key component of Seraphim is a reference moni-
tor. The reference monitor is implemented as a co-located
extension to the Node OS. Every node has a reference
monitor through which all accesses to the node resources
occur. The policy framework is a component of the ref-
erence monitor. The policy framework itself is reconfig-
urable and it can be downloaded dynamically when re-
quired. Applications or administrators use the interface
provided by the policy framework to create a customized
piece of code that encodes the type of access control policy
and other constraints used in the access control decision
making process. This code fragment is called the active

25

ANTS PLAN CANES

o000 EE

~ N =

Management
EE /
/ NodeOS
Seraphim
‘ Security
Re: erfence Proxy
Monitor
|
L) v
NodeOS
Resources
¥

Figure 1: Secure Active Network Node

capability (AC) [16, 9, 8].

Unlike a traditional capability, which is merely a static
authorization credential that encodes the principal and
the permissions associated with the principal, an active
capability is actually an executable Java bytecode in our
implementation. In addition, an active capability is pro-
tected by digital signatures, resides in user space, and can
be freely passed around. Conceptually, an active capabil-
ity is a piece of unforgeable code that encodes a critical,
application-specific part of the decision making code used
in access control.

By using an active capability we can encode various sit-
uational policies that depend on system attributes. For
instance, by writing a piece of code that checks the cur-
rent system time and compares it with a value stored
in the active capability we can introduce a policy that
expires after a certain time deadline. Similarly, various
enforcement and revocation schemes based on other at-
tributes like quota, history, and information content can
be implemented. These schemes are very useful in an
open internetworking environment with diverse applica-
tion requirements. An application can use quota-based
revocation to limit the amount of system resources a
client can consume. This is useful to counter denial of
service attacks.

An active capability relies on a policy framework for
context. An application presents an active capability
along with its regular data or protocol capsules to the
active router’s reference monitor at execution time. The
access control policy type and user credentials are ex-
tracted from the capability. The remote router’s reference
monitor recreates the context of the policy type within its
policy framework. If at any point during this process, the
policy framework discovers that it does not have an im-
plementation for the type of the policy, it downloads the
code dynamically into the framework, using the underly-
ing active network. It then instantiates the run-time pa-
rameters associated with the application in its sandbox-
like environment and executes the active capability in this

environment. Based on the result of the evaluation of this
active capability, the access control decision is enforced.

The principal of the active capability, which is typically
an application user, must be authenticated by a trusted
authority. The trusted authority also acts as the policy
server in our system. This entity is responsible for gener-
ating and keeping track of the active capabilities. Usually,
we associate one or more policy servers with each protec-
tion domain. Application programs contact their nearest
or least-loaded server and obtain the active capability dy-
namically.

A security proxy component was added as a tempo-
rary module in our design. Presently, the active network
community is still working on the specifications of a stan-
dardized NodeOS interface [20]. In order to provide in-
teroperability between an application written for any EE
and our reference monitor, we need an entity that in-
tercepts the requests to NodeOS resources and redirects
them to the reference monitor. At this point the EEs di-
rect their requests for NodeOS resources to the security
proxy which sits on top of the NodeOS. The proxy acts
as a wrapper to the NodeOS API and redirects access
requests to the reference monitor. The reference moni-
tor evaluates the request and passes the result on to the
proxy. Depending on the result the proxy either forwards
the request to the NodeOS or returns it to the EE with
a denial notification.

The next section describes the reference monitor, the
policy framework and active capabilities in detail.

4 Active Capabilities, Policy
Framework, and Reference
Monitor

In our approach, active capabilities distribute access con-
trol information including security policies within an ac-
tive network. Security provisions are componentized so
that complex policies and controls may be dynamically
downloaded component by component. Active capabili-
ties (ACs) are capsules (or part of capsules) that encap-
sulate security code like a security policy or access con-
trol decision. Policy servers operate as a communication
front-end for distributing executable security policies in
the form of ACs. An AC may either provide all the code
for a security policy or access control, or it may spec-
ify a policy server from which to retrieve code. A refer-
ence monitor is used to intercept application and active
network capsule code resource requests. The reference
monitor applies the appropriate security access controls
to resource requests. As the access controls are applied,
the security code in an AC may request further policies
that must be downloaded from a policy server.
Typically, traditional security systems are designed to
enforce one particular type of security policy like MAC
or DAC. Security policies are usually static and are not
easy to change once deployed. In many cases, the secu-
rity policies are specified in a policy language and com-

26

piled to an implementation that provides access control.
In our approach, security policies are mobile agents or
downloadable executable code in the form of ACs. In or-
der to help users with policy specification, we provide an
object-oriented policy representation framework in Java.
The policy representation framework consists of a hierar-
chy of classes as shown in Figure 2.

DDAC
]

DAC MAC

RBAC

(0N ' Interfaces

Primitives

Figure 2: Component-level Map of the Policy Framework

The classes at the bottom of the framework are mostly
abstract and are mainly used to represent mathematical
concepts such as sets and mappings. These classes form
the basis for a hierarchy of successively more specialized
classes representing concepts such as labels and access
control lists. At the top of the framework are classes
which can be used to represent a variety of generic policy
forms.

A policy framework that places a heavy burden on its
users will not be popular. With this in mind, we pro-
vide a policy framework GUI which makes the process
of creating new policies or specializing existing policies
as painless as possible. Typically, to use a security poli-
cies, most users will just select one of a list of predefined
policies or use the default settings chosen by a system
administrator. However, our approach also allows sys-
tem administrators and expert users to create and mod-
ify policies that respond to specific application needs or
security threats. The goals of our policy framework are
to allow predefined policies to be enforced efficiently and
effortlessly and also to provide a convenient interface for
policy authors to create more sophisticated policies.

The current policy framework supports the following
common types of access control policies: Mandatory
Access Control (MAC), Discretionary Access Control
(DAC), Double Discretionary Access Control (DDAC),
and Role-based Access Control (RBAC) [21]. More ap-
plication specific access control policy systems can be
easily extended from this object-oriented framework ([14]

provides several good examples). In our model, we can
specify not only the < subject, object, operation > access
control triple, but also include a resource limit on usage,
situational decision rules, constraints and dependences,
e.g., based on current time of the day or current role of
the principal.

Our framework also lets users specify pre-conditions
and post-conditions. Pre-conditions allow necessary secu-
rity checks to be performed before the actions take place,
and post-conditions can be used to maintain state and
perform additional checks after the action has been com-
pleted and when more information becomes available.

The policy framework is used in both the domain policy
administrator and the reference monitor. Figure 3 shows
the interaction of the various components of the policy
administration mechanism.

Obtain
AC

Request
AC

lPolicy Administrator GUI‘ :

AC Repository

AC Evaluation
Sandbox

Policy Framework|
Components

Request
AC

Policy Server

Componentized
Policy Framework

Obtain
AC

Reference Monitor

(Co-located in NodeOS) Domain Policy Administratrator:

Figure 3: Policy Administration

There are three ways to pass an AC to the reference
monitor:

e The applications can create application specific ACs
or obtain them from the policy server and then send
the AC along with active capsules. The AC may be
embedded into the active capsule, or it may be an
active capsule itself. When a capsule arrives at a
remote node, it is demultiplexed to the appropriate
EE, which maintains the state concerning the capsule
and recognizes protocols and flows. The EE presents
the AC to the security proxy along with its request
to a NodeOS resource.

e If the application capsule does not have an AC, upon
receiving the resource request via the EE, the refer-
ence monitor contacts the domain policy server di-
rectly, and asks for the AC associated with the prin-
cipal of the application capsule.

e For common applications or frequent users, the pol-
icy server may distribute the ACs in advance to the
reference monitors during system initialization.

27

For frequently occurring operations like IP forwarding,
dynamically changing capabilities are not necessary. Ac-
cess control rules tend to be static and caching provides
a short circuit or fast path processing alternative for such
requests. On the other hand, our application section
demonstrates some protocols that can benefit greatly by
using the expressibility afforded by the power of dynamic
capabilities.

In order to improve the AC evaluation efficiency, the
reference monitor uses a cache to store the ACs, or even
the result of AC evaluations. Depending on the freshness
and type of the AC, a request may be satisfied by a sim-
ple cache lookup instead of an expensive AC evaluation.
On the other hand, for some types of capabilities, the ref-
erence monitor can always download the latest capability
from the policy server. Caches are purged periodically
to maintain their freshness. We plan to improve the effi-
ciency and optimize the cache consistency protocol used
in our architecture.

Another important attribute of this architecture is the
ability of the trusted authority to revoke a capability at
any point in time. The trusted authority can send a
“purge cache” message to the relevant reference monitors
and install a new capability at run time. Alternately, the
application can present a properly signed new capabil-
ity during run-time with a newer version number which
invalidates the existing capability.

4.1 Discussion

We are using the JDK1.2 security API to do simple key
generation and management and AC authentication. We
plan to leverage ongoing work in this area, and integrate
it with our system. Of particular interest are the systems
being developed by Network Associates, Inc. [17] and
KeyNote [1]. Using the attributes of the two systems we
plan to define an infrastructure that again allows users
to pick and choose the best attributes from either system
dynamically.

Another problem that needs to be addressed is low-
level code safety in the reference monitor. The minimum
requirements for low-level code safety are control flow
safety, memory safety, and stack safety [15]. Currently
we rely on the Java byte code verifier [28] to provide low-
level code safety. Before loading a class, the verifier per-
forms data-flow analysis on the class code to verify that
it is type safe and that all control-flow instructions jump
to valid locations.

There are several other approaches for low-level code
safety. The PLAN project [1] uses programming language
techniques to address the code safety problem. Capsules
are written using a strongly typed, resource limited lan-
guage and dynamic code extensions are secured by using
type safety and other mechanisms. Another approach is
Proof-Carrying Code (PCC) [19]. Besides regular pro-
gram code, PCC carries a proof that the program satis-
fies certain properties. The proof is verified before the
execution of the code. The generation of a proof may be
complex and time consuming, while its verification should

be simple and efficient. Software fault isolation (SFI) [26]
provides another alternative for low-level code safety. It
uses special code transformations and bit masks to en-
sure that memory operations and jumps access only the
correct memory ranges.

Here again, a variety of different mechanisms and pro-
tocols have been proposed. Each method has its own ad-
vantages and disadvantages. Ultimately the application
must be given the choice to pick the mechanism that is
most suitable for its purpose. We plan that in the future
our framework will be generic enough to allow all these
mechanisms to co-exist, using the same principles that
guided the design of our experimental policy framework.

5 Experimental Testbed

Our initial testbed implementation is based on the ANTS
toolkit developed at MIT [27]. The original toolkit was
written before the architecture group was formed, and did
not reflect the layered architecture proposed by the ar-
chitecture working group. Our first task was to split the
design into layers and separate the functionality of the
original Node class into distinct NodeOS and EE compo-
nents. We added the Seraphim reference monitor between
the EE and the NodeOS. We called the modified system
SAINTS (Secure Active Inter-operable Network Toolkit
System). Our SAINTS is backwards compatible with
original ANTS and can run original ANTS applications!.

5.1 Using the Testbed

In order to use our testbed, the policy server has to be
initialized first. The policy server is the trusted third
party for the testbed. It acts as a front-end to the policy
framework classes and allows applications to create active
capabilities. Currently we do not provide support for dy-
namic policy negotiation but allow multiple security do-
mains to exist. When the policy server is started, it also
starts the policy administrator. The policy administrator
starts a GUI which allows users or system administrators
to create and define policy-specific attributes and gen-
erate active capabilities. Users of system administrator
can choose any policy type from DAC, DDAC, MAC, or
RBAC. In this section, we are going to show the usage
of the DAC policy, the most simple one, in the Gnipper
application, and then the usage of the RBAC policy, the
most flexible and complicated one, in the dynamic secure
multicast application.

A screenshot of the GUI for DAC is shown in Figure
4. The user or administrator selects and sets the policy
type to DAC. In order to create a new active capabil-
ity, the user types in a file extension and clicks on the
“New DAC File” button. To reuse existing capabilities,
the “Load DAC File” button is used, after specifying the
file extension. To add (remove) ACs into policy specifi-
cation the user name, the object and the allowed oper-
ations on that object are all entered in the appropriate

1Contact authors for the Seraphim software release

28

Figure 4: Policy Administrator GUI for DAC

fields and the “Add to Policy” (“Remove from Policy”)
button is clicked. Post-conditions and pre-conditions are
also added if necessary. The ACs can be stored using the
“Update Storage” button, and be retrieved at any point
in time, by using the “Load DAC File” command. The
“Send Capability” button is used to send the ACs to a
particular user or reference monitor. To test the policy
specification the GUI also provides an “Evaluate” option
in the “Policy” menu.

The GUIs for the other policy types are similar to the
DAC GUL A screenshot of the RBAC GUI is shown in
Figure 5. The RBAC GUI supports more functionality
and allows the administrator to create role definitions and
to associate users and permissions with the role.

5.2 Applications

As a part of our testing and development phase, we devel-
oped several interesting, yet conceptually simple, appli-
cations on our testbed to demonstrate the significant ad-
vantages of our architecture. These include the Gnipper
application and the secure multicast applications. The
next two subsections give a brief overview of these exper-
iments.

Figure 5: Policy Administrator GUI for RBAC

5.2.1 Gnipper

The Gnipper experiment demonstrates the creation of
dynamic protection domains or enclaves. This is best
explained with the help of an example presented below
(Figure 6).

In our example, User U at Node A is trying to discover
the network topology and sends out a Ping capsule with
destination address of Node D. Ping packets may be un-
welcome because they may be used in a denial of service
attack or because of privacy. If we decide that Node D
should be secure from Ping requests from User U at Node
A, then we create a Gnipper vaccine and install it at the

User U LT T~
Node A

GNIPPER
VACCINE

Node E

Node F

Figure 6: Gnipper Application

28

reference monitor of Node D. The vaccine, an anti-Ping
AC, will disable the ability of User U at Node A to ping
Node D. So when the Ping capsule from User U arrives
Node D, Node D drops the capsule and propagates the
vaccine to the previous node, Node C. Now Node C is
vaccinated. When user U sends another Ping capsule to
Node D, the capsule will be dropped at Node C and the
vaccine will be installed at Node B. So the vaccine dy-
namically moves one-hop at a time toward the source of
the Ping, in response to Ping requests for original sender.
It is important to note here that the vaccine is reversible
and the system administrator or trusted authority can
send another active capability and install it on Node D
dynamically, purge the caches on Node B and Node C
and allow Ping from User U at Node A to reach Node D.
Then the normal execution of the Ping is resumed.

The exact node which drops the Ping request changes
dynamically depending on the number of Pings generated
by the source and the pinging routes. For example, al-
though Node E and Node F can also be used for Ping,
the vaccine is not installed on those nodes because they
were not used in the previous Ping attempt from Node A.
By selectively broadcasting the vaccine on the frequently
used routes between Node A and Node D, we have suc-
ceeded in building a dynamically growing firewall around
Node D, and also reduced the traffic and moved the denial
of service attack away from the intended victim.

Although our prototype implementation was not built
for performance, we did make preliminary performance
measurement (Refer to [16] for more performance mea-
surements). The average overhead for an application run-
ning on a Sun SparcStation 10 machine to create a vaccine
and install it at another Sun SparcStation 10 machine on
the same 100Mbps local Ethernet LAN was measured as
77ms. Without creation, the average time to send a vac-
cine and install it under the same setup took 34ms.

This experiment can be extended to build agile and
dynamic firewalls that can react to attacks at runtime.
When an active node or trusted agent detects attempted
attacks, it can send out an active capability carrying a
“warning” message with the appropriate vaccine, to build
a dynamic line of defense against outside attacks or to
raise the level of security within the domain. Similarly, a
firewall can be built dynamically around a compromised
node to isolate the victim. When the threat is gone the
active node or the trusted agent can send out another
active capability to resume normal operation. This can
be used as a very powerful security tool in conjunction
with intrusion detection and countermeasure systems.

5.2.2 Dynamic Secure Multicast

The dynamic multicast application was intended to show-
case the benefits of using the RBAC policy implementa-
tion and to demonstrate the creation of dynamic multi-
cast groups. In addition it demonstrates a range of dif-
ferent situational specifications using active capabilities.

Most of the existing secure multicast schemes are based
on sharing a secret session key among the subscriber

nodes to ensure privacy of data. The main problem with
this approach is the prohibitive overhead associated with
the need to change the session keys whenever a person
leaves the group. This is necessary, in order to make sure
malicious members do not continue to listen to multicast
data. In order to facilitate dynamic joining and leaving,
we use active capabilities to grant and revoke users access
to sensitive multicast data in our experiment When a user
joins, the trusted authority installs an active capability
that gives the user privileges to receive the multicast data,
at the reference monitor of the user’s local node. When
the user leaves the group, the active capability for the
user is simply revoked by the trusted authority. Our ex-
perimental scheme has a much lower overhead compared
to the traditional schemes.

The multicast program we used is a modified version
of the sample multicast application in the original ANTS
toolkit. Using our modified multicast application, we de-
vised two different scenarios. The first one is a cable-TV
style “Pay-Per-View”. A user who wishes to receive a se-
quence of special multicast packets contacts the trusted
authority and obtains an active capability that has a re-
source limit built into it. This capability is then installed
in the reference monitor of the user’s node. Every time
a special data packet is delivered to the node, the re-
source limit is decremented by one. When the resource
limit reaches zero, the active capability expires and user
can no longer receive the special multicast data traffic. If
the user wishes to receive more, then the user has to pay
again and get another active capability with the appro-
priate resource limit.

The actual implementation was done using role based
access control (RBAC) policy . Users were assigned a de-
fault role, that did not let them receive any of the special
multicast data packets. Once they “paid”, their role was
replaced by a “special” role that gave them the access
rights for a predetermined number of special multicast
data packets. When the resource limit reached zero, the
“special” role was expired and the original default role
was resumed.

The second scenario demonstrates the use of time-
stamped active capabilities for control access. This ex-
periment is a cable-TV style “Sneak-preview”. Any user
in the multicast group obtains, say, two minutes worth
of free multicast data. Active capabilities are obtained
and installed in the similar way as in the first scenario.
Once installed, the active capability keeps track of the lo-
cal time and expires after two minutes have elapsed. We
are assuming here that applications cannot alter the local
time, as it is a protected resource.

Both the “Pay-Per-View” and “Sneak-preview” exper-
iments dramatically reduce the amount of state main-
tained by the server, compared to the state maintained by
existing traditional secure multicast solutions. By elimi-
nating the need for secret session keys, these experiments
distribute the server processing load among all the par-
ticipating routers and allow asynchronous, client-side ini-
tiated joining and leaving.

30

Based on our current efficient, dynamic, and secure
multicast, we plan to conduct a “geo-casting” experiment
that alerts or warns subscribers about natural disasters
like tornadoes passing through a geographic region. A
multicast group is formed using our dynamic join and
leave, based on geographic information. As the tornado
moves, the multicast group also moves by adding and re-
moving appropriate receivers in real time, using our effi-
cient join and leave. The proper active capabilities can be
supplied to meteorologist “subscribers” in a larger area,
or to mobile users to warn that they are entering a danger
area.

5.2.3 Other Applications

Currently we are integrating our Seraphim security sys-
tem into the CANEs|[2] congestion control and error re-
covery multicast application. We use our RBAC policy to
control the signaling procedure of CANEs, and to control
the installations of different protocols dynamically. We
also use our framework to control access to data packets
dynamically.

We also provide Seraphim security services to an NS2
simulation [3] of a new secure multicast routing protocol.
In the NS2 simulation, some multicast groups need higher
security routing. The MAC policy of Seraphim assigns
different security clearance levels to routers. The system
then obtains the security information of the routers in
the network, for a particular multicast group, based on
their security clearance level. The simulation uses this in-
formation to set up proper secure multicast routing trees.
The Seraphim reference monitor functions as the enforce-
ment engine and ensures that the multicast joins follow
the established security level hierarchy.

6 Related Work and Discussion

Little research has been done in security policy manage-
ment and domain interoperability. In traditional systems,
security policy defines access control which is enforced by

.enforcement engines such as reference monitors in oper-

ating systems and firewalls in networks. Individual poli-
cies can be defined at each enforcement point and man-
aged separately or centrally. For example, each firewall
in a company can be either configured individually to es-
tablish a set of rules defined by policy, or managed by
a centralized policy administrator such as the Cisco Se-
cure Policy Manager for firewalls [10]. The policy changes
are expected to occur infrequently in traditional systems.
More recently, Bhatt et al. [4] used self-managed and self-
organized mechanisms for automating network manage-
ment. Naccio of MIT [13] provided a high-level approach
for safety policy expression and enforcement, which is
implemented for enforcing policies on JavaVM classes.
Schneider characterized a class of enforceable security
policies [24] and there was an automata implementation
[12] to enforce such policies.

The security working group [18] of the active networks

research community has been instrumental in publicizing
and highlighting the importance of security in active net-
works. The security draft emphasizes the importance of
incorporating security into the initial design stage of the
active network architecture itself. As mentioned earlier,
we believe that we can classify security related research in
this field into three general categories. The first one deals
with the more traditional notion of security. It includes
authentication, access control, policies and enforcement.
Some examples are protection of valuable information us-
ing encryption, providing data integrity using signatures.
Public key infrastructure (PKI) and key distribution and
management problems fall into this category. The se-
curity working group [18] has launched some important
exploratory research in this direction.

The second category is related to security associated
with the mobile nature of the environment. Protec-
tion of nodes from mobile code originating in foreign
domains and protection of active packets or code from
malicious hosts fall in this category. The PLANet effort
[1] raises some of the issues associated with these pro-
tections. In addition they also provide a bootstrapping
module that ensures that the system configures itself cor-
rectly at startup or reboot time. The protection from
mobile code is provided by using a type-safe, resource
limited, functional programming language with dynamic
type verification. Mobile code can install protocols at
nodes securely by using the extensibility features pro-
vided by the language.

Our research focuses on the third category: dynamic
security. We believe that our work is complementary to
the other research and attempts to enhance the flexibility
and to improve usability of their techniques. By compo-
nentizing the security policy framework we provide an
infrastructure to enforce any kind of expressible security
policy. Using our infrastructure, applications can specify,
implement, and enforce fine grained access control poli-
cies. These policies can be created, changed or revoked
on the fly and enforced at run-time. Traditional mech-
anisms can be configured as components in our systems
and their context can be instantiated and enforced on de-
mand. The safety features provided by the bootstrapping
and language features can be incorporated as an integral
component of our framework.

However, there is more to dynamic security than sim-
ply dynamically deploying and enforcing security policies
and mechanisms. We believe that we are barely touch-
ing the surface when it comes to exploring the potential
applications and the limits of dynamic or active secu-
rity. The combination of the active nature of the under-
lying architecture and the flexibility and dynamic nature
of our framework has thrown open a new frontier for ex-
ploration and discovery. Examples like the tornado-watch
and dynamic multicast demonstrate a fresh, alternative
and functional approach to existing problems.

We are in the process of integrating our work within
our active network working group and will demonstrate
the flexibility and portability of our framework by incor-

31

porating it into CANEs [2]. We already have a implemen-
tation version that runs on the Abone [5]. In the future
we plan to refine our techniques and define the protocols
for interactions between heterogeneous security domains.
In addition we also plan to explore applications of our
framework to non-traditional ubiquitous computing envi-
ronments and to integrate the applications into the active
networking architecture.

Any node that uses our security has simply to add our
reference monitor as an extension. The reference monitor
will provide mechanisms for accessing advanced and com-
posable services. The reference monitor can be used in
an EE or Java environment, as well as in a NodeOS. We
will also support the concept of domains and will provide
domain-level policy conflict resolution and negotiation in
the future.

In order to make the downloading of policy framework
secure and to simplify the adding of extensions, we are
in the process of developing a prototype of the Manage-
ment EE. The Management EE will aid in managing the
NodeOS, will initialize meta-level policies and will pro-
vide a framework for secure bootstrapping. We are also
working on the design of a generic framework for key man-
agement.

7 Conclusions

In this paper, we describe a prototype security architec-
ture that complements the basic active network architec-
ture and augments its functionality. The flexibility and
expressibility afforded by this implementation framework
enables us to implement a multitude of diverse, innova-
tive and exciting applications. These applications exploit
the active networking paradigm without compromising
the security of the infrastructure. In addition, our ar-
chitecture lays the ground rules for seamless integration
with parallel and ongoing efforts in the active networks
community.

With our prototype implementation, we developed ap-
plications that demonstrate the benefits of our infrastruc-
ture. In particular, the Gnipper application demonstrates
the creation of dynamically growing protection domains
using vaccines. The multicast experiments showcase the
use of our framework as an alternate approach to tackling
the key-distribution and revocation problems associated
with secure multicast applications.

In summary, we believe that our approach is a step
in the direction of designing a comprehensive and flexi-
ble framework to integrate various security mechanisms
and services into the active network architecture. It also
provides a foundation for discussing issues related to co-
existence, inter-operation and portability of these mech-
anisms. At the same time, our architecture imposes min-
imum overhead on the existing infrastructure and allows
applications to specify and enforce customized security
mechanisms conveniently.

References

[1] The SwitchWare Project
http://www.cis.upenn.edu/~switchware/.

Homepage

[2] CANEs Project Homepage
http://www.cc.gatech.edu/projects/canes.

[3] UCSC Multicast Research
http://www.cse.ucsc.edu/research/ccrg/.

Homepage

[4] S. Bhatt, A. V. Konstantinou, S. R. Rajagopalan,
and Yechiam Yemini. Managing security in dynamic
networks. In 13th USENIX Systems Administration
Conference (LISA’99).

[5] Bob Braden and Livio Ricciulli. A plan for a scalable
Abone - a modest proposal, January 1999.

[6] K. Calvert et al. Architectural framework for active
networks. AN Architecture Working Group, Draft,
1998.

[7] Roy H. Campbell and M. Dennis Mickunas. Build-
ing dynamic interoperable security architecture
for active networks. an accepted proposal to
DARPA BAA9803, 1998. Also see the web site at
http://choices.cs.uiuc.edu/Security /seraphim/.

[8] Roy H. Campbell, M. Dennis Mickunas, Tin Qian,
and Zhaoyu Liu. An agent-based architecture for
supporting application aware security. In the Work-
shop on Research Directions for the Next Generation
Internet, May 1997.

[9] Roy H. Campbell and Tin Qian. Dynamic agent-
based security architecture for mobile computers.
In the Second International Conference on Parallel
and Distributed Computing and Networks, Brisbane,
Australia, December 1998.

[10] Cisco Systems, San Jose, CA. Cisco security man-
ager tutorial, DOC-786905, 1999. Available at
http://www.cisco.com/warp/public/cc/cisco/mkt /
security /csm.

[11] D. Denning. Cryptography and Data Security.
Addison-Wesley Publishing Company, 1982.

[12] U. Erlingsson and F. B. Schneider. SASI enforcement
of security policies: a retrospective. In DARPA In-
formation Survivability Conference and Ezxposition,
Hilton Head Island, SC, January 25-27, 2000.

[13] David Evans and Andrew Twyman. Flexible policy-
directed code safety. In IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, May 9-12, 1999.

[14] Tim Fraser. An object-oriented framework for secu-
rity policy representation. Master’s thesis, Depart-
ment of Computer Science, University of Illinois at
Urbana-Champaign, December 1996.

32

[15] Dexter Kozen. Efficient code certification. Technical
Report 98-1661, Department of Computer Science,
Cornell University, January 1998.

[16] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian,
Roy H. Campbell, and M. Dennis Mickunas. An
agent based architecture for supporting application
level security. In DARPA Information Survivability
Conference and Ezposition, Hilton Head Island, SC,
January 25-27, 2000.

[17] Sandra Murphy. Active Networks Mailing List.

[18] Sandra Murphy et al. Security architecture for active
nets. AN Security Working Group, July 15, 1998.

[19] G. C. Necula. Proof-carrying code. In Principles
of Programming Languages (POPL ’97), pages 106
119, January 1997.

[20] L. Paterson et al. NodeOS interface specifications.
AN NodeOS Working Group, Draft, 1999.

[21] Vijay Raghavan. On the design and implentation of a
security policy adminstration for a dynamic security
system. Master’s thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign,
May 1999.

[22] Tomas Sander and Christian F. Tschudin. Protect-
ing mobile agents against malicious hosts. In Mobile
Agent Security, LNCS 1419. 1998.

[23] R. S. Sandhu and E. J. Coyne. Role-based access
control models. IEEE Computer, 29(2), February
1996.

[24] F. B. Schneider. Enforceable security policies. Tech-
nical Report 98-1664, Department of Computer Sci-
ence, Cornell University, January 1998.

[25] Van C. Van. A defense against address sproofing us-
ing active networks. Master’s thesis, Department of
Electrical Engineering and Computer Science, MIT,
May 1997.

[26] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient software-based fault
isolation. In SOSP ’93.

[27] D. Wetherall, J. Guttag, and D. Tennenhouse.
ANTS: a toolkit for building and dynamically
deploying network protocols. In IEEE OPE-
NARCH’98, San Francisco, CA, April 1998.

[28] Frank Yelin. Low-level security in Java. In WWW/
Conference, December 1995.

APPENDIX C

Flexible Secure Multicasting in Active Networks”

Zhaoyu Liu, R. H. Campbell, S. K. Varadarajan, Prasad Naldurg, Seung Yi, M. D. Mickunas
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
{zhaoyu, roy, svaradar, naldurg, seungyi, mickunas}@cs.uiuc.edu

Abstract

In this paper we describe an alternative, flexible ap-
proach to multicast security in active networks. Tra-
ditional schemes for securing multicast commaunica-
tion have key management and scalability problems
for many typical applications. In addition, traditional
mechanisms are not capable of expressing flezible, situ-
ational security policies for multicast sessions and par-
ticipants. Our scheme exploits the computational power
of active networks to provide dynamic, flexible security
for multicast applications. One of the main advantages
of our scheme is the low communication and key distri-
bution overhead associated with multicast group man-
agement.

Our approach is based on the Seraphim security ar-
chitecture implementation [5], which uses active capa-
bilities [6] for access control. Seraphim is an extensible,
reconfigurable security architecture that is flezible and
accommodates a wide variety of security policies and
mechanisms. It also provides applications and users
the ability to create dynamically and enforce highly cus-
tomized and situational policies. Using these policies
we have developed several secure multicast applications
that demonstrate the flexible nature and low overheads
associated with our architecture.

Keywords: mullicast, security, active networks, scal-
ability, flexibility, policy, access control, active capabil-
ity, reference monitor

1. Introduction

Multicast is a useful network service that provides
efficient, best-effort data delivery from a source to mul-
tiple recipients. The use of multicasting is becoming
more and more widespread, as is demonstrated by the
popularity of the experimental MBone multicast ser-
vice and its supporting applications. With video con-

*This research is supported by DARPA F30602-98-1-0192

33

ferencing via the Internet becoming extremely popular,
multicast becomes an important technique to reduce
sender transmission overhead, network bandwidth, and
the latency observed at the receiver side. As multicast
applications are widely deployed, the need to secure
multicast communications becomes critical.

Providing security to multicast still remains a chal-
lenging problem due to the difficulties involved in
securely distributing a session key. Traditional ap-
proaches involve a central key distribution center and
these approaches do not scale well, especially when the
multicast group members were scattered across a wide
area network. These schemes rely on the existence of
an asymmetric key infrastructure where every member
who wishes to be part of the multicast network, needs
to possess a private/public key pair. They also sug-
gest that the new session key be unicast to each and
every member, encrypted in the member’s private key.
The Core Based Tree (CBT) [4] and the Protocol Inde-
pendent Multicast (PIM) [8] were proposed to address
the issue of scalability, while papers like [7] introduced
newer methods of key generation and distribution.

However, even in these approaches, one requires
sender-specific keys to authenticate the sender of a mes-
sage. New members must be given the session key and
probably participate in a mutual authentication pro-
tocol. Also, all these methods require that the group
(or session) key be changed when a particular member
leaves the group, to prevent that user from eavesdrop-
ping on the rest of the traffic. Of particular concern
here is the mechanisms used for distributing the new
session key to the remaining users. The distribution
overhead is usually very large [11]. This inefficiency
makes traditional secure multicast applications very
hard, if not impossible, to be used in very dynamic
environment, which has frequent multicast joins and
leaves.

In this paper, we propose a new approach for mul-
ticast security based on active networking technology
and our dynamic policy framework. We use reference
monitors at active routers and an active capability to

control the delivery of multicast packet. Active capa-
bilities are essentially active capsules that are signed
and concisely encode access control policy specifica-
tions and other security attributes associated with the
underlying active protocol, e.g., multicast. Reference
monitors provide a sandbox like environment on the
routers and securely execute the active capabilities and
enforce the policy specified in them. Using this ap-
proach we can flexibly support various secure multicast
applications and reduce the communication overhead
considerably.

Our paper is organized as follows. Section 2 of the
paper gives a brief overview of our architecture and
talks about its place in the general active network ar-
chitecture. It also focuses on the implementation of
the reference monitor and its flexible policy framework,
which allows us to create and enforce dynamic policies.
The next section talks about one particular type of ac-
cess control policy, Role Based Access Control (RBAC)
policy. The fourth part of the paper describes the
dynamic secure multicast experiments in detail. The
fifth part discusses the related work and the final part
presents our conclusions.

2. Overview of Seraphim Architecture

An active network [15] provides a software frame-
work that enables network applications to customize
the processing of their data. Active applications in-
ject capsules that contain programs (along with data)
into the network. Active routers dynamically install
these programs and execute them on the data. The
basic software on an active router consists of three dis-
tinct, functionally separate layers: the application, the
EE(Execution Environment), and the NodeOS. The
NodeOS is similar to the kernel of traditional operating
system. The EE is similar to a user shell. It provides
an interface for accessing the NodeOS resources and an
execution environment for application capsules. By us-
ing the shell provided by the EEs, applications create
capsules with protocol code and/or data that can be
installed dynamically in remote routers.

In order to provide security to the active networks
infrastructure, and to provide dynamic, interoperable,
and application customized security policy, we have im-
plemented an architectural framework based on and
built into the underlying active network architecture.
The major components of our architecture and their
interactions, in the context of the active network archi-
tecture are shown in Figure 1.

The security proxy component was added as a tem-
porary module in our design, since the active network
community is still working on the specifications of a
standardized NodeOS interface [12]. The proxy acts as

34

ANTS PLAN CANES
EE EE 00| rE
EE
Management \ \ f
EE /
NodeOS
Seraphi NN
eraphim
Security
Refer.ence Proxy
Monitor
[
L ¥
NodeOS
Resources
¥

Figure 1. Secure Active Network Node

a wrapper to the NodeOS API and redirects the access
requests to the reference monitor and then the evalua-
tion results to applications.

2.1. Reference Momitor and Active Capability

The key component of our architecture is the refer-
ence monitor. The reference monitor is implemented
as a co-located extension to the NodeOS. Every node
has a reference monitor through which all accesses to
the node resources occur. A dynamic, reconfigurable
policy framework is developed as a component of the
reference monitor for application customized policies.
The policy framework itself is reconfigurable and it
can be downloaded dynamically when required. Ap-
plications or administrators use the interface provided
by the policy framework to create a customized piece
of code that encodes the type of access control policy
and other constraints used in the access control deci-
sion making process. This code fragment is called the
active capability (AC) [10].

Unlike a traditional capability, which is merely a
static authorization credential that encodes the prin-
cipal and the permissions associated with the princi-
pal, an active capability is actually an executable Java
script in our implementation. In addition, an active
capability is protected by digital signatures, resides in
user space, and can be freely passed around. Conceptu-
ally, an active capability is a piece of unforgeable code
that encodes a critical, application-specific part of the
decision making code used in access control. The ac-
tive capability can encode various situational policies
that depend on system attributes such as the current
system time, resources, quota, etc.

An active capability relies on a policy framework
for context. An application presents an active capabil-
ity along with its regular data or protocol capsules to

the active router’s reference monitor at execution time.
The access control policy type and user credentials are
extracted from the capability. The remote router’s ref-
erence monitor recreates the context of the policy type
within its policy framework. If at any point during this
process, the policy framework discovers that it does not
have an implementation for the type of the policy, it
downloads the code dynamically into the framework,
using the underlying active network. It then instanti-
ates the run-time parameters associated with the ap-
plication in its sandbox-like environment and executes
the active capability in this environment. Based on the
result of the evaluation of this active capability, the ac-
cess control decision is enforced.

The principal of the active capability, which is typ-
ically an application user, must be authenticated by
a trusted authority. The trusted authority also acts
as the policy server in our system. This entity is re-
sponsible for generating and keeping track of the active
capabilities. Usually, we associate one or more policy
servers with each protection domain. Application pro-
grams contact their nearest or least-loaded server dy-
namically and obtain the active capability dynamically.

2.2. Policy Framework

In order to support ACs and provide users more flex-
ibility in terms of policy specification, we have imple-
mented an object-oriented policy representation frame-
work in Java. This allows users and commercial orga-
nizations to specify policies tailored to their specific
operational needs. The framework itself is a hierarchy
of classes as shown in Figure 2.

The framework is dynamically configurable and ex-
tensible. The classes at the bottom of the frame-
work are mostly abstract and are mainly used to repre-
sent mathematical concepts such as sets and mappings.
These classes form the basis for a hierarchy of succes-
sively incremented specialized classes representing con-
cepts such as labels and access control lists. Finally, at
the top of the framework are classes which can be used
to represent a variety of generic policy forms.

The policy framework supports the following com-
mon types of access control: Mandatory (MAC), Dis-
cretionary (DAC), Double Discretionary (DDAC), and
Role-based (RBAC) [13]. More application specific
access control policy systems can be easily extended
from this object-oriented framework ([9] provides sev-
eral good examples). In our model, we can specify not
only the traditional < subject, object, operation > ac-
cess control triple, but also include a resource limit on
usage, situational decision rules, constraints and de-
pendences, e.g., based on current time of the day or
current role of the principal.

35

MAC RBAC

OS Interfaces

Primitives

Figure 2. Component-level Map of the Policy
Framework

Our framework also lets users specify pre-conditions
and post-conditions. Pre-conditions allow necessary se-
curity checks to be performed before the actions take
place, and post-conditions can be used to maintain
state and perform additional checks after the action
has been completed and when more information be-
comes available. An administrator GUI is provided as
front end to the policy framework (Figure 3).

2.3. Dynamic Access Control

In order to apply our policy framework to active
networks, we use active capabilities to distribute the
permission information of the policies. We also com-
ponentize the framework so that it can be dynamically
downloaded component by component. Active capabil-
ities(AC) encapsulate a customized piece of code that
encodes the type of access control policy and other
constraints used in the access control decision. The
framework uses the policy server as a communication
front-end to accept AC requests either from reference
monitors or applications and to provide the requested
customized AC. Figure 3 shows the interaction of the
various components of the policy administration mech-
anism. The policy administrator and the policy server
are trusted entities.

There are three ways to manage the distribution of
the ACs to the reference monitor:

e The applications can create and obtain application

Obtain
AC

AC Evaluation
: Sandbox
‘|AC Cache

Request
AC

[Poh'cy Administrator GUI]

AC Repository

Request
AC

Policy Framework|

Policy Server

Components :
Componentized
Obtain Policy Framework
AC

Reference Monitor

(Co-located in NodeOS) Domain Policy Administratrator

Figure 3. Policy Administration

specific ACs through the policy server GUI and
send the AC along with active capsules. When
a capsule arrives at a remote node, it is demulti-
plexed to the appropriate EE. The EE presents the
AC to the security proxy along with its request to
a NodeOS resource.

o If the application capsule does not have an AC,
upon receiving a resource request via the EE,
the reference monitor contacts the domain policy
server. The policy server responds to this request
with the appropriate customized AC.

e For common applications or frequent users, the
policy server may distribute the ACs in advance
to the reference monitors during system initializa-
tion.

Another important attribute of this architecture is
the ability of the trusted authority, represented by the
policy administrator or server, to revoke a capability
at any point in time.

3. Role Based Access Control (RBAC) Policy

Our policy framework includes Role Based Access
Control (RBAC) policy type, which is used in the se-
cure multicasting applications presented in this paper.
A Role Based Access Control policy, as the name sug-
gests, uses the concept of a role as its basis for rep-
resenting permissions [14]. It is a form of access con-
trol that emerges in the context of security policies for
organizations. A role is chiefly a semantic construct
that forms the basis for an access control policy. With
RBAC, system administrators create roles according to
the job functions performed in an organization, grant
permissions to those roles, and then assign users to the

36

roles on the basis of their specific job responsibilities
and qualifications. The idea is that the particular com-
bination of users and permissions brought together by
a role tends to change over time while the permissions
associated with a role are themselves relatively more
stable.

The biggest advantage that RBAC has over other
forms of access control is that it is extremely intuitive
to use and maps easily to real-world situations. A hi-
erarchy of roles with senior roles inheriting all the per-
missions of junior roles closely follows the structure of
organizations. The access control policy in RBAC is
embodied in components such as role-permission, user-
role and role-role relationships. These components col-
lectively determine whether a particular user is allowed
access to a particular operation on a particular compo-
nent. These individual components can be easily (and
intuitively) configured to provide the required degree
of access control. For example, adding a new user to
a system would merely involve assigning appropriate
roles to the user according to the user’s functions in
the organization. Likewise, changing the nature of, for
example, printer access, for all managers in an orga-
nization can be accomplished by merely changing the
permissions with the manager role in the organization.
All managers can immediately see the effects of the
change.

RBAC is the most flexible type of access control
policy. All RBAC subjects are assigned roles. Each
role represents a particular set of objects and the al-
lowed operations on each object. The major benefits
of this aggregation are the considerable saving in terms
of space and simplification in terms of management
and enforcement. RBAC allows users to create poli-
cies with more sophisticated specifications than sim-
ple DAC, DDAC or MAC. A single user may have
many different roles, and different permissions depend-
ing on the current role. Different constraints related
to role and privilege may be enforced in RBAC. The
constraints supported in our RBAC implementation in-
clude three important ones {13]:

e Mutually exclusive roles/permissions. This is the
most common RBAC constraint. The same user
can be assigned to at most one role in a mutually
exclusive set. This ensures separation of duties.

e Prerequisite roles/permissions. If a role is declared
a prerequisite for another role in the system, it
means that a user may belong to the latter role
only if the user already belongs to the first one.

e Cardinality constraints. This constraint imposes a
limit on the number of users that can be assigned
to a role. Similarly, this constraint can limit the

Figure 4. Policy Administrator GUI for RBAC

number of roles that a permission can be assigned
to.

The policy administrator uses a GUI which allows
users or system administrators to create and define pol-
icy specific attributes, and generate active capabilities.
A screenshot of the RBAC GUI is shown in Figure 4.
This GUI allows the administrator to create role def-
initions and associate users and permissions with the
role, and supports other functionality (see {13] for more
details).

4. Dynamic Secure Multicast

In this section, we are going to describe several dy-
namic multicast applications. The purpose is intended
to showcase the benefits of using the RBAC policy class
implementation and demonstrates the creation of dy-
namic multicast groups in active networks. In addition
we also demonstrate a range of different policy specifi-
cations using active capabilities.

37

Our testbed implementation is based on the ANTS
toolkit developed by MIT [15]. The original toolkit
was written before the architecture group was formed,
and did not reflect the layered architecture. Our first
task was to split the design into layers and separate
the functionality of the original Node class into dis-
tinct NodeOS and EE components. This modification
is backward compatible and the original ANTS appli-
cations can run in our Secure Active Interoperable Net-
work Toolkit System (SAINTS) [5].

4.1. The Multicast Tree Formation

While the ANTS implementation of multicast sub-
scription was used for the multicast join, it provided no
implementation for multicast leave. Modifications were
made to the ANTS multicast subscription code, and
the multicast unsubscription capsule was also written,
to take care of dynamic multicast leave. This results
in automatic construction or pruning of the multicast
tree.

The multicast tree is dynamically formed and
pruned by the generation of subscription and unsub-
scription capsules. The multicast subscription and un-
subscription capsules are sent by a receiver towards the
group owner (sender). These capsules dynamically con-
struct and prune the multicast tree, respectively, when
they are evaluated in the active nodes along the path
from the receiver to the sender.

The Figure 5 show the steps of the multicast tree
is formed when two receivers join a particular group
in our implementation. The sender in the figure may
refer to the Core in CBT [4] or the Rendezvous Point
in PIM [8].

Similarly, when an unsubscription capsule is passed
upwards, links are removed and the tree is pruned as
shown in Figure 6, using active network features.

4.2. Pay-Per-View and Sneak Preview

As mentioned earlier, most of existing secure multi-
cast schemes are based on shared session key among the
subscriber nodes to ensure privacy of data. The main
problem with this approach is the prohibitive overhead
associated with the need to change the session keys ev-
ery time a member leaves the group. In order to facili-
tate dynamic joins and leaves, our implementation uses
active capabilities that grant and revoke access to the
sensitive multicast data to the users in the multicast
group. When a user decides to join, the trusted agent
installs a capability that gives the user privilege to re-
ceive the multicast data, on the user’s local node. The
trusted agent may delegate this responsibility to the
multicast source node or intermediate active routers.

~» Regular Role Subscribe

' Sender

O Receiver Node

Router Node

" @

T

O O

Figure 5. Multicast Subscription in Active Net-
work

38

Unsubscribe

Sender

Router Node
O Receiver Node

3)

4)

Figure 6. Multicast Unsubscription in Active

Network

When the user leaves the group, the active capability
for the user on the local node is revoked by the trusted
agent. By doing that, we don’t need to change any
shared secret among the subscribers and thus can re-
duce the large session key distribution overhead. Our
experiment scheme has a much lower overhead com-
pared to the traditional schemes in place today.

Using our modified multicast application from
ANTS, we devised two different experiment scenarios.
In the first experiment or “Pay-Per-View”, any user
that wishes to receive a sequence of special multicast
packets contacts the trusted agent and obtains an ac-
tive capability that has a resource limit built into it.
This capability is then installed in the reference mon-
itor. Every time a special packet is delivered to the
node, the resource limit is decremented by one. When
the resource limit reaches zero, the active capability ex-
pires and the user can no longer receive the special mul-
ticast data traffic. If the user wishes to receive more,
then the user “pays” and gets the another active capa-
bility with an appropriate resource limit.

The actual implementation was done using Role
Based Access Control (RBAC). Users were assigned a
default role (Regular role), that did not let them re-
ceive any of the special multicast data packets. Once
they “paid”, their role was replaced by a Special role
that gave them the access rights for certain number of
special multicast data packets (Figure 7). When the
resource limit reached zero, the Special role was re-
voked and the default Regular role was resumed. A
simple extension of this example is selective blocking.
The sender can revoke the roles of selected nodes and
implement dynamically changing selective blocking for
different domains.

Send $5
~—» Special Role
—» Special Data

' Sender

Router

\ O Receiver

O OO0

Figure 7. Pay-Per-View

The second demo used time-stamped active capabil-
ities to control the access control decision. This experi-
ment, or “Sneak-preview” allows any user in the multi-
cast group to get some fixed time period (for example,
two minutes) worth of free multicast data. Active ca-

39

pabilities are obtained and installed in the same way
as in the first experiment. Once installed, the active
capability keeps track of the local time and expires af-
ter two minutes have passed. The users may choose to
receive any two minute period of the multicast traffic,
all at once or in parts at any time. When the two min-
utes are used up, the active capability expires and user
cannot receive multicast data anymore.

Both the “Pay-Per-View” and “Sneak-preview” ex-
periments dramatically reduce the amount of state
maintained by the server, compared to the state main-
tained by existing secure multicast mechanisms. And
by eliminating need for using or changing session keys,
these experiments distribute the server processing load
among all the participating active routers and allow
asynchronous, client-side initiated joining and leaving.

A possible extension of our applications is se-
cure emergency multicasts. Emergency notification of
events like a storm warning must be secure to be ef-
fective. “Geo-casting” scheme can be used to alert
or warn subscribers about natural disasters like torna-
does passing through a geographic region. A multicast
group is formed using dynamic join and leave, based
on the geographic information. As the tornado moves,
the multicast group can move along with it by adding
and removing appropriate receivers in real time, using
our fast join and leave. Active multicast data capsules
can be sent to meteorological “subscribers” in a larger
area, or to mobile users to warn that they are entering
a danger area.

5. Related Work and Discussion

Currently active networks research community is ap-
plying active technology to multicast in the areas of
congestion control [1] and error recovery [2]. We are in-
tegrating our Seraphim security system into them. We
use our RBAC policy to control the signaling procedure
of CANEs, and to dynamically control the installations
of different protocols. We can also use our framework
to control access of data packets dynamically.

We also use Seraphim to provides security service to
an NS2 simulation [3] of a new secure multicast rout-
ing protocol. In the simulation, some multicast groups
need higher security routing. The system gets the se-
curity information of the routers in the network, for
a particular multicast group, based on their security
clearance level. The simulation uses this information
to set up proper secure multicast routing trees. The
MAC policy of Seraphim is the access control policy for
this application, which assigns different security clear-
ance levels to routers. The Seraphim reference monitor
functions as the enforcement engine and ensures that

the multicast joins follow the established security level
hierarchy.

The overhead of our reference monitor and AC eval-
uation with proper cache scheme is negligible [10]. A
efficient, distributed AC management is important for
the overall system performance. Further research is
required to design and implement such an AC manage-
ment system.

6. Conclusions

This paper presents an alternative approach to se-
cure multicasting. In the traditional approach when a
user leaves a secure multicast group, the sender typ-
ically has to send messages to all the subscribers, in
the entire multicast tree or subtree and change the
session keys. Furthermore, during the transition pe-
riod some of the sensitive information may be compro-
mised. When a large number of users leave, and in
some cases, rejoin, then this communication overhead,
requiring reliable distribution! of new session and up-
dating becomes prohibitive.

In our proposal, active capabilities carry the secu-
rity information, using point-to-point secure channels.
When a receiver leaves, an active capability changing
the receiver’s role is sent to the corresponding receiver
router. Our solution does not rely on the multicast in-
frastructure for reliable delivery of an active capability.
The reference monitor which is a co-located extension
to our NodeOS kernel in active routers provides a safe,
sandbox like environment for the execution of these ac-
tive capabilities and dynamic enforcement of the policy
associated with the active capabilities. The overheads
associated with key distribution and scaling also dra-
matically diminish.

In addition, by embedding situational policies like
pay-per-view, sneak-preview, selective blocking etc.,
we have demonstrated that our framework is flexible
enough to satisfy a variety of secure multicast speci-
fications. The dynamic nature of our security makes
it very attractive for interactive sessions and video-
conferencing.

References

[1] CANEs Project Homepage
http://www.cc.gatech.edu/projects/canes.

[2] PANAMA Project Homepage
http://www.tascnets.com/panama/.

[3] UCSC Multicast Research Homepage

http://www.cse.ucsc.edu/research/ccrg/.

1Reliable delivery in multicasting is in itself a hard problem
and various solutions that have been proposed have high over-
heads associated with them

40

[4] T. Ballardie, P. Francis, and J. Crowcroft. Core based
trees: an architecture for scalable inter-domain multi-
cast routing. In Proceedings of the ACM SIGCOMM
’98, San Francisco, CA, September 1993.

[5] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas,
Prasad Naldurg, and Seung Yi. Seraphim: dynamic
interoperable security architecture for active networks.
In IEEE OPENARCH 2000, Tel-Aviv, Israel, March
26-27, 2000.

[6] Roy H. Campbell and Tin Qian. Dynamic agent-based
security architecture for mobile computers. In the
Second International Conference on Parallel and Dis-
tributed Computing and Networks, Brisbane, Australia,
December 1998.

[7] G. Caronni, M. Waldvogel, D. Sun, and B. Plat-
tner. Efficient security for large and dynamic multicast
groups. In Procceedings of the Seventh Workshop on
Enabling Technoligies, (WET ICE ’98), IEEE Com-
puter Society Press, 1998.

[8] D. Estrin, D. Farinacci, et al. Protocol independent
multicast — sparse mode (PIM-SM): protocol specifi-
catons. TETF draft, March 1997.

[9] Tim Fraser. An object-oriented framework for secu-
rity policy representation. Master’s thesis, Department
of Computer Science, University of Illincis at Urbana-
Champaign, December 1996.

[10] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian,
Roy H. Campbell, and M. Dennis Mickunas. An agent
based architecture for supporting application level se-
curity. In the DARPA Information Survivability Con-
ference and Ezposition, Hilton Head Island, SC, Jan-
uary 25-27, 2000.

[11] Suvo Mittra. Iolus: a framework for scalable secure
multicasting. In Proceedings of the ACM SIGCOMM
’97, Cannes, France, September 1997.

[12] L. Paterson et al. NodeOS interface specifications. AN
NodeOS Working Group, Draft, 1999.

[13] Vijay Raghavan. On the design and implentation of
a security policy adminstration for a dynamic security
system. Master’s thesis, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, May
1999.

[14] R.S. Sandhu and E. J. Coyne. Role-based access con-
trol models. IEEE Computer, 29(2), February 1996.

[15] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS:
a toolkit for building and dynamically deploying net-
work protocols. In IEEE OPENARCH’98, San Fran-
cisco, CA, April 1998.

APPENDIX D

1Y
i

Secure Information Flow in Mobile Bootstrapping Process™

Zhaoyu Liu, M. Dennis Mickunas, Roy H. Campbell
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
{zhaoyu, mickunas, roy}@cs.uiuc.edu

Abstract

The security of bootstrapping is very important for
mobile computing. In this paper, we present the boot-
strapping process of the Cherubim security system which
uses a smartcard to allow a mobile Cherubim client to
universally access remote standard services. In order to
prevent any leakage of sensitive information, we apply a
type system for secure flows to the bootstrapping source
codes. The type system guarantees that well-typed pro-
grams satisfy a noninterference security property. This
means that the program does not “leak” sensitive data.
The type system also produces principal types for type-
correct programs that characterize how programs can be
called securely. The analysis demonstrates that the type
system can ensure secure flow enforcement.

Keywords: bootstrapping, mobile, security, type sys-
tem, information flow

1 Introduction

In a mobile environment, mobile clients usually need
to download codes/services from the base server. Users
can develop customized protocols to do the download-
ing. Preventing unintentional leakage of information is
an important security issue here, although it is rarely
considered by protocols developers.

The problem of secure information flow within sys-
tems having different sensitivity levels has been recog-
nized widely and studied extensively. The early work
was by Bell and LaPadula [2], and it was extended by
Denning’s lattice-model [5, 6]. Denning used a program
certification, an efficient form of static analysis that
could be incorporated into a compiler to verify secure
information flow in programs. Liskov ef. al [9] proposed
a method of using labeled types to control information
flows. The labeled type consisted of a regular type such
as int, and an added static label which was used to
control information flows through standard static type-
checking and notions of subtyping. Other more recent

*This research is supported by DARPA F30602-98-1-0192 and
F30602-97-1-0281

41

efforts tried to extend the analysis to special language
features like procedures and nondeterminism, while oth-
ers focused on integrity only.

So far these efforts have not had much impact in prac-
tice, and there has not been a satisfactory treatment
of the soundness of Denning’s analysis. The soundness
would assure that if the analysis succeeds for a given
program on some inputs, then the program executes se-
curely. Although Denning provides some intuitive argu-
ments and some account of information flow in terms of
classical information theory, no formal soundness proof
is attempted.

Recently, Volpano et. al {11, 13] took a type-based
approach to the analysis and proved soundness which
resembles traditional noninterference [8]. The certifi-
cation conditions of Denning’s analysis are formulated
as a simple type system. Basically a type system is a
formal system of type inference rules for making judg-
ments about programs. Traditionally, these rules are
used to reason about type correctness of strongly-typed
programs. However, they can be regarded, in general, as
logical systems in which to reason about different pro-
gram properties. Secure information is one such prop-
erty.

Using a type system to analyze secure information
flow has many advantages. It serves, in programs, as a
formal specification that cleanly separates the security
policies from the algorithms for enforcing them. Un-
like other systems, the soundness of the type system
can be formalized and proved. So type-correct programs
have secure information flow. The secure flow type sys-
tem provides a uniform framework exploiting traditional
type checking in programming languages to ensure se-
cure flow enforcement. So the issue of secure flows is no
longer orthogonal to the more traditional type correct-
ness issue of whether a program is well formed. Further-
more, standard type inference techniques can be applied -
to automate secure flow analysis. This makes the type
system more practical than other models.

In this paper, we present a concrete bootstrapping
process, and show how to practically apply Volpano’s
type-based approach to it to improve security. We begin
by the overview of bootstrapping process in the Cheru-
bim security system and secure type system. Then we

apply the type system to examine information flow in
the bootstrapping process. We conclude this paper by
some discussions and future work.

2 Bootstrapping in Cherubim Security System

The Cherubim (10, 4] security architecture consists of
CORBA compliant security services with security en-
hanced IDL providing application level security. It is all
implemented in Java. The bootstrapping process [14] in
Cherubim system allows mobile Cherubim clients, using
a smartcard, to have universal remote access to standard
services of the home server. This allows us to build a
security system with maximum configurability and ex-
tensibility which is essential to many emerging applica-
tions like active networks and mobile computing. The
bootstrapping process includes Diffie-Hellman key ne-
gotiation protocol, jurassic classloader, and supporting
core security services. The core security services encap-
sulate the basic facilities, including encryption, digital
signatures, and authentication, based on the top of stan-
dard Java Cryptographic API. They provide a uniform
interface to-an implementation that can be built with
a variety of standard security components. In general,
the classes in the Cherubim system are split into three
categories that are loaded by different classloaders:

o Primordial Classes: The primordial classes contain
the Java core classes (packages that begin with
java.), as well as the necessary cryptographic code
from the Cherubim and Java cryptographic pack-
ages. The Java core classes are assumed to be
present and reliable on the client machine, while
the other primordial classes are taken to the client
machine by the user on a smartcard or similar de-
vice.

e Jurassic Classes: The jurassic classes consist of
those classes present on the user’s home ma-
chine. This includes the classes that make up the
JacORB[3] object request broker, the classes that
make up any applications that reside on the user’s
home machine, and the Cherubim policy library [7]
(which consists of the basic blocks from which spe-
cific policies are constructed).

e CORBA Classes: The CORBA classes are loaded
by a classloader using CORBA. These classes in-
clude specific policies that need to be evaluated
prior to access remote objects and the classes that
make up applications that do not reside on the users
home machine. These classes are loaded using a
Cherubim policy that is located on the user’s home
machine.

The focus of this paper is for jurassic classes, whose
security concerns are essentially shared by general mo-
bile applications. We concisely give an overview of our

42

bootstrapping process in the remaining of this section.
For more details, please refer to [14]

The initial booting of the Cherubim System proceeds
as follows:

1. Client machine boots its operating system and Java.
Virtual Machine (this may be done with AEGIS[1]
or a similar system)

2. User runs boot program
3. Boot program prompts for passphrase

4. Boot program hashes passphrase using SHA-1 hash
algorithm to an IDEA symmetric key

5. Boot program uses IDEA key to decrypt smartcard
(including private keys)

6. Client machine makes a socket connection to the
user’s home machine

7. Home machine spawns a connection thread to com-
municate with the client

8. Client begins key negotiation with the server

In order to securely load the jurassic classes over the
network to the client machine, encryption, authentica-
tion, and digital signatures are necessary. The boot-
strapping system in Cherubim implements session key
negotiation using the Diffie-Hellman protocol:

1. Client machine sends a SignedDHMessage (a signed
Diffie-Hellman message, signed by the Smartcard)
to the server

2. Server verifies the signature, timestamp, and desti-
nation on the message

3. Server sends a SignedDHMessage to the client

Client verifies the signature, timestamp, and desti-
nation on the message

5. Client and Server generate the shared secret

6. Client and Server hash shared secret using SHA-1
hash algorithm to an IDEA secret key

After this authentication has taken place, the client
can then begin to use core security interfaces to request
classes as follows:

1. JurassicClassloader receives request for a class on
the client

2. JurassicClassloader checks to see if requested class
is in the class cache and, if so, return it

3. JurassicClassloader checks to see if the primordial
classloader can load the class (i.e. if the class is in
the CLASSPATH) and, if so, return it

4. JurassicClassloader checks if existing session key is
more than one hour old and, if so, negotiate a new
one as above

5. JurassicClassloader sends a SEClassRequest (a
signed, encrypted class request, signed by the
Smartcard and encrypted with the IDEA session
key) to the home server over the existing socket

6. Server verifies the signature, timestamp, destina-
tion, and sequence number on the SEClassRequest

7. Server loads the requested class off the local disk,
if available

8. Server sends the class in a SEClassResponse (a
signed, encrypted class response, encrypted with
the IDEA session key) to the client

9. JurassicClassloader verifies the signature, times-
tamp, destination, and sequence number on the
message

10. JurassicClassloader adds the class in the message

to the class cache

11. JurassicClassloader returns the class in the message

to the process that called it

In order to show clearly the information flow in boot-
strapping, we show the call trees in Figures 1, 2, and 3.
Later we will use secure type system to analyze boot-
strapping based on these call trees.

3 Type Inference and Polymorphism

In secure flow type system, the basic types are security
classes, which we denoted here by 7. The type inference
rules are used to enforce secure information flow. For
example, the inference rule for an assignment statement
T :=eis:

vz T var,
yhe:T
yFx:=e:7cmd

So for the assignment to be well typed, it must be
that

e 1 is a variable of type 7 var, meaning z is capable
of storing information at security level 7, and

e expression e has type (security class) 7.

Moreover, a command ¢ has type 7 ¢md only if it is
guaranteed that every assignment within ¢ is made to a
variable whose security class is 7 or higher. Similarly,
the rule for the condition is as:

yhe:T,

vk c: 7 cemd,

yEc T emd

v+ if e then c else ¢ : 7 cmd

43

proc decrypt(in key:int, inout charge:int,
inout cipher,clear:array of char)

var i := 0

var unit := unit rate of constant
begin

charge := unit;

while cipher[i] > 0 do
if encrypted(cipher[i]) then

charge := charge + 2 * unit;
clear[i] := D(cipher[i], key)

else
charge := charge + unit;
clear[i] := cipher[il

fi;

i:=1+ 1

od
end

Figure 4. The Library Decryption Procedure

and for the while loop:

yhe:m,
ytc:T emd,
v+ while e do ¢: 7 ecmd

The reference[13] gives more complete treatment of in-
ference rules.

The partially ordered security classes of flow policy
naturally corresponds to the subtyping relations:

<7
FrCor’

and (antimonitonic or contravariant):

TC1
1 emd C 1T emd

A major advantage of the secure flow type system
is that it can be implemented using a powerful type
inference technique. A type inference algorithm not only
proves whether a procedure has a secure type, or is free
of illegal flows, but it also produces a principal type [12,
11], which succinctly conveys how the program can be
executed securely. A principal type is a constrained type
scheme with a constraint set of flat subtype inequalities
among security levels. As long as the specification of the
procedure’s calling context satisfies the constraints, the
procedure can be executed without causing any illegal
flows. So the principal type of a procedure constrains
the security classes of its formal parameters. In this
sense, it is polymorphic type.

As an example from [11], consider the library decryp-
tion procedure in Figure 4. The encrypted character
array cipher is decrypted using key and stored in the

static public void main(String[] args)

public SecretyKey passphraseToSecretKey(String passphrase,
String algorithm,int keylength,
String hashAlgorithm,
String characterEncoding)
throws NoSuchAlgorithmException,
UnsupportedEncodingException

public byte[] hash(byte datal], String algorithm)
throws NoSuchAlgorithmException

public RawSecretKey(String algorithm, byte datal])
public byte[] decrypt(byte data[], Key key)
throws NoSuchAlgorithmException,
IllegalBlockSizeException,
BadPaddingException, KeyException,
NoSuchPaddingException
public JurassicClassLoader ()

public void newKey()

public static void init(Core C, CherubimPrincipal P,
Network n, JurassicClassLoader j)

public Class loadClass(String className)
throws ClassNotFoundException

public synchronized Class loadClass(String className,
boolean resolvelt)

throws ClassNotFoundException

protected byte[] loadClassBytes(String className)

Figure 1. Main Call Tree

44

protected byte[] loadClassBytes(String className)
private void newKey()

public ClassRequest(String className, int sequenceNumber,
Date timeSent, String destination)

public bytel] sign(byte[] data)
public byte[] sign(bytel]l data, PrivateKey key,
String algorithm)
throws NoSuchAlgorithmException,
InvalidkeyException, SignatureException

byte[] encrypt(byte[] data)
public byte[] encrypt(bytell data, Key key)
NoSuchAlgorithmException, KeyException,
NoSuchPaddingException,
IllegalBlockSizeException,
BadPaddingException

public SEClassRequest(String source, byte[] message,
byte[] signature, String signatureAlgorithm)

public SignedEncryptedMessage(String source, byte[] message,
bytel] signature, String signatureAlgorithm)

public SignedMessage(String source, byte[] message,
byte[] signature, String signatureAlgorithm)

public decrypt(byte[] data)
public byte[] decrypt(bytep[]l data, Key key)
throws NoSuchAlgorithmException,
IllegalBlockSizeException,
BadPaddingException, KeyException,
NoSuchPaddingException

public boolean verifyHome(byte[] data, byte[] signature)
public verify(byte[] data, byte[] signature,
PublicKey key, String algorithm)
throws NoSuchAlgorithmException,
InvalidKeyException, SignatureException

Figure 2. loadClassBytes Call Tree

45

private void newKey()

public DHMessage start(String destination, String algorithm,
int keylength, String hashAlgorithm)

public DHMessage(String d, String a, int k, String ha,
BigInteger m, Date t)

public byte[] sign(byte[]l data)
public byte[] sign(bytel]l data, PrivateKey key,
String algorithm)
throws NoSuchAlgorithmException,

InvalidkeyException, SignatureException

public SignedDHMessage(String source, byte[] message,
byte[] signature, String signatureAlgorithm)

public SignedMessage(String source, bytel]l message,
byte[] signature, String signatureAlgorithm)

public boolean verifyHome(byte[] data, byte[] signature)
public verify(byte[] data, byte[] signature,
PublicKey key, String algorithm)
throws NoSuchAlgorithmException,
InvalidKeyException, SignatureException

public DHMessage receive(DHMessage dhm, String source)

public DHMessage(String d, String a, int k, String ha,
BigInteger m, Date t)

public SecretKey getkey()

public byte[] hash(byte datal[l, String algorithm)
throws NoSuchAlgorithmException

public RawSecretKey(String algorithm, byte data[])

Figure 3. newKey Call Tree

46

clear array. The actual decryption is done by proce-
dure D and the cost of doing the decryption is stored
in variable charge. The inferred principal type for this
procedure is as follows:

Va,B,v,y with 3 Cv,6Ca,yC 8.
B proc(v,y arr,v arr,a var)

Any call of the procedure can be executed securely pro-
vided the arguments of the call have security classes that
satisfy all the constraints. The call itself will have type
B emd. To show the usefulness of the principal type,
let’s change the expression

charge := charge + 2 * unit;
in procedure of Figure 4 to the expression
charge := charge + key + 2 * unit;

in an attempt to leak the key variable information to
the charge variable. Then the principal type of the
procedure becomes:

Vo, 8,6, v,y with Cv,0Ca,7yCB6Cy,iCa.
8 proc(d,v arr,v arr,a var)

So one of the two additional subtype constraints § C «
clearly says that the security level of the charge param-
eter must be at least that of the input key. Therefore
any leakage is prevented.

4 Analysis of Bootstrapping Process

Type inference can formally produce principal types.
Such principal types can be simplified by a formal type
simplification scheme. In our case, we will manually
deduct the principal types for essential functions of
bootstrapping from the source codes. For simplification
reasons, we only consider two security levels, high and
low. In addition, there are several subtle points to be
clarified as follows:

e we don’t consider covert channels, including timing,
and exception output from the Java language.

o A Diffie-Hellman key negotiation protocol intro-
duces some randomness in its computation. In gen-
eral, the soundness of the type system will no longer
hold for a random computation. In our special case,
we assume the protocol is correct and the session
key generated from the protocol has a high security
level. Therefore, soundness is not affected.

e Some information must be properly classified.
Sometimes an algorithm will produce sensitive data
from insensitive inputs. The type system will not
detect that such data are actually sensitive. But
we can package the algorithm as a procedure whose
type can be asserted to reflect the different security

47

levels of the inputs and outputs. Key generation is
one such example. On the other hand, sometimes
an algorithm will produce insensitive data from sen-
sitive data. Again we need to assert the correct type
for such an algorithm. Encryption is one such ex-
ample.

o We assume that Java cryptographic class library is
trustworthy.

Let’s first look at a simple example. With imported
necessary Java packages, here is the source code of de-

crypt:

public byte[] decrypt(bytel[] data, Key key)

throws NoSuchAlgorithmException,
IllegalBlockSizeException,
BadPaddingException, KeyException,
NoSuchPaddingException {

Cipher cipher =
Cipher.getInstance (key.getAlgorithm());

cipher.init(Cipher .DECRYPT_MODE, key);

return cipher.doFinal(data);

}

and simply the principal type is (here var actually means
object):

Va,3 with a C 3. 8 arr, § proc(a arr, a var)

But the situation is quite different for encrypt. The
source code of encrypt is:

public byte[] encrypt(byte[] data, Key key)

throws NoSuchAlgorithmException,
KeyException, NoSuchPaddingException,
IllegalBlockSizeException,
BadPaddingException {

Cipher cipher =
Cipher.getInstance(key.getAlgorithm());

cipher.init(Cipher .ENCRYPT_MODE, key);

return cipher.doFinal(data);

}

A casual comparison may conclude that the principal
type should be the same as decrypt. This is not true.
As mentioned at the beginning of this section, some in-
formation must be properly classified. The type of this
procedure should be asserted to reflect the different se-
curity levels of the inputs and outputs. So the correct
principal type is:

Va, B with 8 C o . 8 arr, 8 proc(a arr,a var)

A similar case holds for the sign function.

For subsequent analyses we simply give the principal
types for relevant functions, without showing the source
code. The call tree structures are shown in Figure 1, 2,
and 3 for clarification.

oos.writeObject(new SEClassRequest(
SystemState.getPrincipal () .getName(), encrypt(cr), SystemState.getPrincipal().sign(cr),
SystemState.getPrincipal () .getSignatureAlgorithm()));

Figure 5. The Invocation of SEClassRequest

The principal type is useful in analyzing secure in-
formation flow caused by procedure invocations. For
example, the principal type for SEClassRequest is:

networks and mobile computing environment. Such type
inference can provide a finer level of dynamic security
policy.

Vo, 8 with o C . References

B var, 3 proc(a var, & var, @ var, @ var)

An invocation of SEClassRequest is shown in Figure 5.
There, the call is

L var, L proc(L var, L var, L var, L var)

if all four parameters have a low security level. This is
acceptable since the request will be sent over the net-
work and its security level should be low. Assume that
we pass cr (instead of encrypt(cr)) as one of the param-
eters, and the security level of cr (clear text) is high,
then the call is (using subtyping relations)

H var, H proc(H var, H var, H var, H var)

Thus the request will be in the high security level, which
is unacceptable. Therefore passing clear text as one of
the parameters to SEClassRequest is a security violation.

5 Conclusion and Future Work

From the analysis in the previous section, we show
that the secure type system is powerful, although there
are some unsolved problems. It has been shown that the
secure flow problem for a typical programming language
is undecidable [6]. Therefore any sound and recursive
logic for proving that programs have no secure flow vio-
lations is incomplete. This partly explains the previous
problems mentioned in Section 4 such as randomness
and proper classifications of information. Further re-
search is needed to address this issue.

There are other things that the current secure type
system doesn’t handle. For example, sometimes prac-
tical and useful programs need explicitly to lower the
security class for specific variables in a well controlled
way. We don’t know how to handle such cases in the
type system. More research needs to be done in this
area.

We also rely on Java Cryptographic API and Java
cryptographic class library. Since Java is a strongly
typed language, the interfaces of the Cherubim boot-
strapping should be declared with more specific types,
rather than the generic byte arrays.

Overall, we think type system is an efficient way for
enforcing secure information flow. With automatic type
inference techniques, we can easily apply it to active

48

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure
and reliable boostrap architecture. In Proc. of the 1997
IEEE Symposium on Security and Privacy, May 1997.

[2] D. Bell and L. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Re-
port M74-244 MITRE Corp., 1973.

[3] G. Brose. JacORB - a Java object request broker. Tech-
nical report, Berlin Free University, Apr. 1997.

[4] R. H. Campbell and T. Qian. Dynamic agent-based se-
curity architecture for mobile computers. In the Second
International Conference on Parallel and Distributed
Computing and Networks, Brisbane, Australia, Dec.
1998.

[5] D. E. Denning. A lattice model of secure informa-
tion flow. Communications of the ACM, 19(5):236-242,
1976.

[6] D. E. Denning and P. Denning. Certification of pro-
grams for secure information flow. Communications of
the ACM, 20(7):504-513, 1977.

[7] T. Fraser. An object-oriented framework for security
policy representation. Master’s thesis, Department of
Computer Science, University of Illinois at Urbana-
Champaign, Dec. 1996.

[8] J. Goguen and J. Meseguer. Security polities and secu-
rity models. In Proc. of the 1982 IEEE Symposium on
Security and Privacy, pages 11-20, 1982.

[9] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In SOSP-16, Oct. 1997.

[10] T. Qian et al. Cherubim agent based dynamic se-
curity architecture. Technical report, Department of
Computer Science, University of Illinois at Urbana-
Champaign, June 1998.

[11] D. Volpano and C. Irvine. Secure flow typing. Computer
and Security, 16(2):137-144, 1997.

[12] D. Volpano and G. Smith. A type-based approach to
program security. In Proc. Theory and Practice of Soft-
ware Development, volume of 1214 of Lecture Notes in
Computer Science, pages 607-621, April 1997.

[13] D. Volpano, G. Smith, and C. Irvine. A sound type
system for secure flow analysis. Journal of Computer
Security, 4(2,3):167-187, 1996.

[14] C. Willis. On the design and implementation of security
services for dynamic security systems. Master’s thesis,
Department of Computer Science, University of Illinois
at Urbana-Champaign, May 1998.

APPENDIX

E

Dynamic, Distributed, Secure Multicast in Active Networks

Sudha K. Varadarajan’ Tin Qian
Microsoft Corp. Dept. of Computer Science
Seattle, WA University of Illinois, Urbana-Champaign

Abstract-This paper proposes two frameworks for secure
multicast on active networks. The frameworks exploit the
computational power of active networks to provide the security
desired for multicast, while removing drawbacks in traditional
approaches. The main security component in the frameworks is
the Active Capability(AC) which replaces the passive session
key. The main advantages of using an AC are lack of an
asymmetric key pair requirement for authentication, lack of
session key modification requirement when a member leaves the
group and a highly distributed and scalable key distribution
mechanism independent of availability of a group owner.

1. INTRODUCTION

The benefits of multicasting are becoming ever more apparent,
and its use much more widespread. While traditional approaches did
not scale, CBT[1] and PIM[2] were proposed to address scalability
and other papers like [3] introduced newer methods of Key
Generation and Distribution. However, these methods still required
that the session key be changed when a member leaves the group
and most protocols rely on the existence of an expensive
asymmetric key infrastructure for secure session key management.
The frameworks proposed in this paper attempt to overcome these
drawbacks by exploiting the computational power of active
networks. Section 2 describes the key components of the underlying
security framework. Section 3 describes and analyzes the two
models whose trust assumptions vary considerably. Section 4
concludes with a comparison of the proposed models with
traditional secure multicast models built on "passive" networks.

II. SECURITY FRAMEWORK COMPONENTS

1) The Certification Authority(CA). The CA is responsible for
authenticating individual entities. All applications/routers first
register with the CA and obtain an Identity Certificate(IC) from the
CA. This IC should be obtained in a secure manner since a
malicious eavesdropper should not be able to steal the IC and
impersonate as the other user. The IC will be used to authenticate
the user whenever required in the frameworks’

2) Active Capability(AC): An Active Capability is an active
object that carries out security functions for protecting and
controlling access to the object(s) it is associated with [4]. In the
proposed security framework, permissions are assigned based on
roles. A role is associated with a set of permissions and an AC is
associated with a role. Hence, if a user has a particular role, it
implies that he possesses the AC associated with that role. ACs are
critical objects and are fully trusted to provide the user with no more
and no less access than his role dictates. Hence, ACs are generated
by a fully trusted Policy Server which has complete knowledge of
role mappings of the system. However, it is impractical to require
that every user obtain his AC from a centralized Policy Server. This
framework proposes ACs that can spawn themselves and delegate

" This work was supporicd by DARPA under grant no. F30602-98-1-0192
* Primary Author for contact regarding questions in the paper - sudhaky @microsoft.com

49

Roy H. Campbell
Dept. of Computer Science
University of Illinois, Urbana-Champaign

access. Every AC possesses a delegation count that limits the
amount of delegation. An AC also carries the name of the Principal
in whom it resides. This prevents a malicious eavesdropper from
stealing the AC and trying to utilize it for himself. An AC also
possesses a timeout count after which the AC invalidates itself. In
addition, the AC also caches the Public Key of the CA to decrypt
ICs presented to it. The following illustrates how an AC may be
obtained by delegation and the high scalability hence achieved:
— : ACRequest Capsule T AC

O : Host with AC R: Active Router 1: Receiver

Policy Server

O @

Fig. 2.1. r1 requests PS for AC

Policy Server

Fig. 2.2. AC delegated
downwards

Policy Server Policy Server

Fig. 2.3. r2 requests for the AC.
12’s request never reaches the PS.

Fig. 2.4. R2 delegates a portion
of its ACto r2.

3) The Multicast AC (MAC): The Multicast AC extends the AC
class and carries the multicast session key and the following
methods as its private data:

. byte[] EncryptMulticastData(byte[] data): This appends a header to
the data, encrypts the header and the data and returns the encrypted
byle array. The header contains the following fields:

The Principal of this AC (this will authenticate the sender to the
receiver), the Role of this AC (which is "Regular Multicast"), the
revocation flag (set to false) and the revokee (set to null).

* byte[] DecryptMulticastData(byte{] encryptedData):This decrypts
the encrypted data, and strips the header. If the revocation flag is set to
true in the header, it checks if its Owner is the Principal to revoke. If
nol, it just returns the decrypted data. Else, it revokes itself by timing
itself out (sets its timeout count to zero) and returns null.

* Principal AuthenticateMulticastData(): This returns the Principal that
identifies the sender of the most recently decrypted data. Hence, one
could decrypt the multicast data, and if one desired, call the
authenticate method to learn who the sender was.

. byte{] RevokeMulticastCapability(byte[] data, Principal toRevoke):
This is identical to EncryptMulticastData except that the revocation
flag is set to true and the revokee is set to the Principal toRevoke.

Henceforth an AC will refer to the Multicast AC.

III. THE FRAMEWORKS

Assume the following Active Network Configuration:

Policy Server S

Al A2 A3 Ad

Fig 3.1. An Active Network

R1, R2, R3 and R4 are active routers. S is the sending multicast
application while Al to A4 are receiving multicast applications
attached to their respective active routers. Note that the application
termed as the sender is none other than the multicast group owner or
the Rendezvous Point in PIM [2] or the Core in CBT [1].

A. Framework I - Trusted Execution Environment for ACs, Non-
trusted Channels - Encrypted ACs.

This section details the first model for secure multicast on Active
Networks. It first describes the BlackBox, a trusted storehouse and
execution environment for an AC followed by a description of the
capsules used and the part they play in the protocol. Next, it
illustrates the protocol and finally analyzes of the framework.

1) The Blackbox: Since the MAC carries the session key for
multicast, it is imperative that an AC cannot be broken into. Hence
an AC is encrypted and transmitted and is decrypted at its
destination. This model assumes the presence of a long term key
pair(call it the AC key) to encrypt and decrypt ACs. The initial AC
is generated by the Policy Server and is encrypted in the Public Key
of the AC key. Every AC also knows the Public Key of the AC key.
When an AC spawns/delegates a new AC, it encrypts the new AC in
its Public Key before passing it to the outside world. This requires
that there exist a "BlackBox" that resides in every active node that
serves as the home and execution environment for an AC in that
node. Every BlackBox knows the long term decryption key(Private
key of the AC key) of the AC. When it receives an AC that it is
expected to house, it decrypts the AC and stores it within itself. The
BlackBox could be either some sort of hardware(say a smart card) or
tamper-proof software running in each host. The BlackBox is trusted
to not break into the AC and reveal its contents to the outside world.
It is trusted to not alter the AC in any manner, but instead just
provide a place for the AC to reside and serve as its interface to the
outside world. The BlackBox in each active node stores the AC for
each application running in that node.

An AC needs to ensure that it is being utilized for the correct
application and that one application does not impersonate as
another. Every AC carries the name of the Principal it is meant for.
Authentication of the Application is done using the Identity
Certificate(IC) of the application. Before the BlackBox replaces the
AC for an application, it presents the IC of the application to the

50

AC, which verifies that the Principal in the IC and the Principal it is
meant for are the same. If not, the replacement is denied.

2) The ACRequest Capsule: This is a capsule that originates at
one of the end applications and is sent towards the sender. The
sender is assumed to always possess the MAC, and if he does not,
then the sender will contact the Policy Server to obtain the AC. The
ACRequest Capsule stores within itself the name of the requesting
application and the router in which it resides. It also carries the role
for which the AC is desired and a vector of requestors. Let us
assume that Al generates an ACRequest Capsule for the role
"Regular Multicast”, and let us assume that only S and R1 possess
the Multicast AC (MAC) at this moment. The ACRequest Capsule
will be sent towards S with a request for the AC for the role
"Regular Multicast" (refer to the section on Multicast AC). Since the
capsule is an active capsule, it will be processed at every
intermediate node on its way to the sender. At each such evaluation,
the ACRequest capsule will check if the intermediate node possesses
the required AC. If it does not, the ACRequest capsule adds the
current node to its requestor list and routes itself towards the sender.
In our above example, this capsule will generate an
ACReplyCapsule at R1 with the requestor Name as "Al at R3" and
the requestors vector will contain { R3,R2 }.

3) The ACReply Capsule: This capsule first delegates a Multicast
AC for each of the Principals in the requestor vector and the final
requesting application. If any of the delegation fails, it sends a new
ACRequest Capsule with the requestors vector and the requesting
application towards the sender. Once all the ACs have been
delegated, the ACReply Capsule retraces its path towards the
requesting application. On the way, it is evaluated at each active
node. If the active node does not contain a Multicast AC and if the
ACReply Capsule is carrying a Multicast AC for this active node, it
will pass on the node’s AC to the node. Note that the route taken by
the ACReply Capsule need not be the same as that taken by the
ACRequest Capsule since internal routers need possess the AC only
for the sake of distribution of the AC by delegation. So, in our
example, it is only necessary for Al to receive the MAC. However,
if R2 and R3 also possess the MAC, it will be easier for A2, A3 and
A4 to obtain the MAC.

4) The Muliicast Subscribe and Unsubscribe Capsules: The
Multicast Subscribe and Unsubscribe Capsules are sent by a receiver
towards the group owner. These capsules dynamically construct and
prune the multicast tree, respectively, when they are evaluated in the
active nodes along the path from the receiver to the sender. Refer [5]
for a diagrammatic sketch of this process. The Multicast Subscribe
Capsule is periodically generated by users who wish to subscribe for
Multicast Data and remain subscribed (hence periodic). When an
application generates a Multicast Subscribe Capsule, the capsule
checks with the local node and verifies that the application possesses
the required Regular Multicast AC. If not, it will generate a new
ACRequest Capsule on behalf of the application and target it
towards the sender.

5) The Protocol: The protocol is illustrated below:

Joining the Multicast Group and_Obraining an_AC: The Sender
requests for and obtains an encrypted MAC. He passes it onto the
BlackBox in his node, along with his IC. The BlackBox decrypts the
AC and passes the IC to the AC. The AC verifies if the Principal it
is meant for is the Principal represented in the IC and if so it notifies
the Blackbox which will then store this AC for the Principal. The
sender then delegates a portion of his AC to his node R1. At the end

of this step, S and R1 possess Multicast ACs as depicted in figures
3.2 and 3.3. It should be noted that while S will use the AC to
encrypt and decrypt multicast data, R1 will use his AC to only
spawn new capabilities.

—» : Multicast Subscribe Capsule
-> : Multicast ACRequest Capsule

© : Host with Multicast AC
-> : Multicast ACReply Capsule

;?oliciSewcr .

Al A2 A3 A4 Al A2 A3 Ad

Fig. 3.2 Fig. 3.3

Application Al wishes to subscribe to the multicast group and
sends a multicast subscribe capsule towards the sender. As a result
of this, the Multicast Tree gets dynamically formed. Also, the
Multicast Subscribe capsule, when evaluated in Al’s node(R3), will
check if Al has the MAC. Since it does not, a new ACRequest
Capsule will be generated and sent towards the sender. The
ACRequest Capsule will reach R1 who has the required AC. R1 will
delegate AC’s for R2, R3 and Al and send them across through the
ACReply Capsule.The ACs will be handed over to the approporiate
nodes when the ACReply Capsule is evaluated in each node. The
nodes will hand over the ACs to their BlackBoxes where the ACs
will be decrypted, deserialized and stored. Figures 3.4 and 3.5
illustrate this. Figures 3.6 and 3.7 are self explanatory.

Al A2 A3 Ad

Fig. 3.6. A2, A3, A4 subscribe
to the group.

Fig. 3.7. Multicast tree is formed
and they receive their ACs.

Sending and Receiving Multicast Data: The sender will request
(through his node’s black box) his MAC to encrypt the message he
wishes to multicast. The MAC will append a header with

51

authentication information to the data, encrypt them and return the
encrypted contents. The sender can then multicast the encrypted
contents to the group. At the receiving end, each receiver
application, through his node's BlackBox will request his MAC to
decrypt the message. The MAC will decrypt the data, strip the
header away and return the decrypted payload. If the receiving
application wished to authenticate the sender, he could call the
"AuthenticateMulticastData" method of the MAC.

Leaving the Multicast Group — Revoking a user’s AC. The sender
may choose to revoke an Application's (say Al) AC either on Al’s
request or of his own accord. In this case, he would call the
RevokeMulticastCapability method of the MAC with Al as the
Principal to revoke. This method returns a regular Multicast
Capsule, with some extra information in the encrypted header (Refer
description of MAC above). The sender can now multicast this
capsule. When Al sends the encrypted data to its AC for decryption,
the AC will notice the revocation flag set to true for its owner Al,
authenticate the revoker and will revoke itself by timing itself out.
All other applications’ ACs will ignore this flag.

6) Analysis of the model: This framework is mixture of both DAC
(Discretionary Access Control) and RBAC (Role Based Access
Control). This is because an AC grants role based privileges, but
contains the Principal it is meant for and so is user-specific. The
reason it contains the Principal is to prevent theft. Assume that users
A and B both have the "Special Multicast" role. The Special
Mutticast role allows a user to only view 10 packets of special data
(something like a pre-paid view). User A has already viewed 5
special packets. Now, user B is about to get a Special AC, with a
fresh count of 10. If the AC did not know it was meant for B and not
A, A could very well eavesdrop on the channel, steal the AC and
present it to his BlackBox as his own. The installation will be
allowed by RBAC since user A has the Special Multicast role.

Trust Assumptions made by this model:

The Active Node is trusted to not reveal one application's IC to
another application.

When an application requires some functionality from its AC (say
encrypt/decrypt data), it will have to contact the appropriate API of
the BlackBox. Since only the node has a handle on its BlackBox, the
application will have to use the APIs of the active node to
communicate with the BlackBox. The active node is trusted to not
redirect such communication to a malicious application, or modify
the communication in any way, instead just be a direct intermediary.

Only the BlackBox sees a decrypted AC and is trusted to neither
reveal the contents of nor modify the AC.

Some Other Issues:

To verify authenticity of AC: An AC can only be created anew by
the Policy Server. All other AC's can only be spawned from existing
ACs. Moreover, ACs are encrypted and transmitted and are
decrypted only in the Black Boxes. Since the AC that is created by
the Policy Server is fully trustworthy and is never modified to
perform other than how it is supposed to, there is no need for this.

Source Integrity: By data encrytion

Authentication of sender: Achieved by generating an AC for a
particular Principal(the Owner of the AC) and verifying that only
the Owner uses the AC. The verification is done using the
Principal's IC and the CA's Public Key.

Non repudiation of message: The assumption in this model is that
a Principal initially receives an IC from the CA in a secure manner
and that an active node never reveals the IC of one Principal to
another. Also, once obtained, an IC is just used locally in the node
and is presented only to the BlackBox on the active node. Thus ICs

cannot be stolen and so an AC of a particular Principal can only be

used by that Principal. When a user asks his AC to encrypt a

message before relaying it, the AC appends the Principal to the

message. Since the AC is completely trustworthy, non repudiation of
messages is achieved.

Prevent Spamming: Before a user attempts to send (or flood)
blank Multicast Data Capsules to a multicast group, the data capsule
on its first evaluation (in the application’s active node) should verify
with the Blackbox (through the node) if the user contains the MAC.
This will verify the user as an authorized subscriber to the group. If
the user does not contain the said AC, the Multicast Data Capsule
can discard itself.

Advantages of the model:

It provides a framework for secure multicast where the session
key management framework is distributed and the model is scalable.

Unlike most other models, group leave does not involve changing
the session key and is computationally inexpensive. The original
session key may be used for multicast for as long as necessary.

Individual entities do not require an Public/Private Key Pair to
receive a session key. They only require a non-repudiable IC
generated by a trusted authority to identify the Principal.

The Session Key is a symmetric key. There are only two
asymmetric key pairs in the entire framework. One is that of the CA.
Its Public Key is used to verify the signature in an IC and is cached
in every AC. The other is that of the AC. The Encryption Key is
stored in the Policy Server and the ACs, while the Decryption Key is
stored in all the Black Boxes. Note that both keys are long-term
keys. The AC key is used only during the time of obtaining and
delegating ACs. The session key is used to encrypt/decrypt ail
multicast data. Hence, encryption and decryption costs in the
framework are relatively low.

Drawbacks and Alternatives:

1)Changing the long term keys is a problem. It may either have to
be done manually, or there should be some other secure protocol
(for example, by using asymmetric key pairs for each individual
entity) to do this. This framework will be ideal for a closed system,
say a cable company or a corporation, that can periodically (say
once a year) change the keys in every node’s BlackBox.

Alternative 1 - Sender (Policy Server) initiated: Manual change of
the key in the BlackBox may neither be feasible nor acceptable.
Instead, the BlackBox could allow the AC decryption key be
modified by a special AC. This special AC should be generated by
the PolicyServer, encrypted in the old AC key, signed by the
PolicyServer and broadcast to every Active Node in its domain. The
Active Node will pass on the AC to the BlackBox for decryption,
where it is activated. This AC has to be signed by the PolicyServer
for double protection. One problem in this approach is a BlackBox
obtaining the AC decryption key the very first time. It could either
be through a trusted boot-strapping routine or alternative 2. Another
problem is what happens if the PolicyServer broadcasts a change
while an active node is down? If the other nodes commit the change,
the BlackBox in this active node will once again require a trusted
method to obtain the new key.

Alternative 2 - Receiver (BlackBox) initiated:
¢ The BlackBox stores the AC decryption key and a time for

which the key is valid.

e The BlackBox does not store the AC decryption key, but
instead stores a special AC that stores this key. This AC
timesout periodically.

In either case, after the timeout period, the BlackBox has to refresh

the key from the Policy Server by making a request to it. The

communication between the BlackBox and the PolicyServer must be

52

secure. One way is to require that each BlackBox have an
asymmetric key pair. The Policy Server gives the special AC,
encrypted in the BlackBox’s public key, to the Black Box. The other
way is to use Kerberos or Sesame that generates a session key that
may be used to encrypt and transfer the new key value. Obviously
both alternatives 1 and 2 have their pros and cons. Alternative 1
requires an additional asymmetric key pair for the PolicyServer. It is
cheaper since the special AC is broadcast. However, the drawback
lies in obtaining the AC key the very first time and may also require
a two-phase protocol to change the AC key. Alternative 2 on the
other hand has much more expensive requirements and is a costlier
process, counting the number of messages one would have to
exchange to make sure all BlackBoxes have the new key. However,
it does not have the disadvantages of Alternative 1.

i)If one of the BlackBoxes is compromised, the entire framework
falls. The assumption is that the BlackBox cannot be compromised.
It must be noted that this is true in traditional approaches to secure
multicast, too. If a single client is compromised and the multicast
session key revealed, then the entire multicast communication fails
and has to be started afresh with new initial values.

Alternative: An alternative approach will be to have an
asymmetric key pair for the entire network and a centralized
directory(say per domain) where the public keys are stored. In this
case, the AC, when delegated, should be encrypted in the receiver’s
public key. Note that the centralized directory is a bottleneck. Also,
it is far more expensive to maintain asymmetric key pairs for every
node in the network. Moreover, obtaining the public key from the
centralized directory should be a secure process.

B. Framework II - Trusted Active Nodes and Trusted Channels
between Active Nodes - Non Encrypted ACs

This framework addresses the issue of requiring a Black Box and a
long term key with which to encrypt and decrypt ACs.

1) The Model: The multicast protocol does not change in this
framework. The section uses the example in framework I (fig 3.2) to
describe a model of a multicast in which the routers and channels
are trusted. In this framework, R1, R2, R3 and R4 are trusted to not
reveal or modify the ACs that they acquire for the applications
attached to them. Also, the channels between R1, R2, R3 and R4 are
secure channels that cannot be eavesdropped upon. In this case,
everything would be the same as in framework I, except that ACs
need never be encrypted and transmitted. Also, the BlackBox is just
a dummy storehouse of ACs in this model. Note that the channel
between the end applications and their routers is not trusted and it is
because of this channel that multicast data is encrypted. The
BlackBox itself resides in the Active Node or Router and not in the
receiving applications or clients.

2) Analysis of the model:
Trust Assumptions made by this model:

The Active Node is trusted to not reveal one application’s IC to
another application.

‘When an application requires some functionality from its AC (say
encrypt/decrypt data), it will have to contact the appropriate API of
the BlackBox. Since only the node has a handle on its BlackBox, the
application will have to use the APIs of the active node to
communicate with the BlackBox. The active node is trusted to not
redirect such communication to a malicious application, or modify
the communication in any way, instead just be a direct intermediary.

ACs are never encrypted. The Active Nodes are trusted to neither
reveal the contents of the AC nor modify the AC. The channels
between active nodes are trusted to be secure.

Some Qther Issues:

To verify authenticity of AC: There is no need for this as explained
in framework I (note that the channels are trusted here and AC
encrytption /decryption is unnecessary).

Source Integrity, Authentication of sender, Non Repudiation of
message, Spamming: As in framework 1.

Advantages of the model:

All the advantages of framework I are applicable here. Moreover,
there is only one asymmetric key pair in this framework - that of the
CA, whose public key is used to verify the signature in an IC.

It does not require a long term key pair to encrypt/decrypt ACs.
This reduces computational and maintenance costs of the protocol.
Drawbacks:

The Active Nodes and their channels must be totally trustworthy.
This may be useful in the Internet where backbone routers and
gateways may be trusted. Also, the hardware channels between the
backbone routers are most likely dedicated and can be made secure.

IV. CONCLUSIONS

This paper provides an innovative approach to the problem of
dynamic, secure multicast. While traditional approaches also
achieve secure multicast, they are extremely restricted in their
protocol since they cannot delegate control(to handle multicast
session events like join and leave) in a trust-worthy manner. The
frameworks proposed in this paper exploit the computational power
of active networks and deploy Active Capabilities that carry out
distributed trust management. As far as the author knows, the
frameworks proposed in this thesis are unique in utilizing the
computation power given by active nets to solve the problem of
dynamic secure multicast in a way that surpasses traditional
schemes. The following lists out the key advantages of the proposed
frameworks over traditional approaches.

1) Session Key Management: This is the key area in which the
proposed frameworks are far superior.

In traditional approaches, there exists a centralized "group owner"
from whom the multicast session key is obtained. This makes the
group owner a "hot spot”. In the proposed frameworks, the multicast
session key is stored in Active Capabilities that are cached by
routers in the dynamic multicast tree. Hence, a client that subscribes
to the group and needs to obtain the session key (or the AC
containing it), makes a request to its parent router and gets it. There
is no centralized key distributor. Key distribution is distributed.

In traditional approaches, the centralized group owner is trusted
to pass on a multicast key to a valid subscriber. Similarly, in the
proposed frameworks, ACs are trusted to delegate ACs to valid
subscribers. The amount of trust is equivalent in both approaches.

In traditional approaches, leaving a group involved two parts: a)
changing the multicast session key, and b) transmitting the new key
to all other valid members of the group. Part a involved generating a
new session key and in most approaches, part b was solved by
unicasting the new key securely(using another pair of keys) to every
other member. The proposed frameworks do not require a change in
the group key when a member leaves the group. Instead, the leaving
member’s AC is revoked. This approach is possible due to the
computational power of active nets. The greatest advantages here are
that 1) by removing part a, the computational complexity on the
group owner reduces enormously if group join/leave is a frequent
event, and ii) part b is replaced by a single revocation of the leaving
member - a large savings on the bandwidth and computation.

53

2) Improved Security with lesser trust: In the traditional approach,
decrypted multicast data may be revealed by subscribed receivers to
un-subscribed hosts. Then, the un-subscribed host is dependent on
the subscribed host to receive the data. Also, the subscribed host
knows the multicast session key which he can reveal to the un-
subscribed host. In this case, the unsubscribed host can view the
multicast data independently, for the lifetime of the session key.

In the proposed frameworks, the receivers do not know the
session key and so cannot reveal the session key to anybody else.
This, by far, reduces the trust on the receivers. Also, in the active
network approach, the original multicast data capsule can contain a
digital watermark of the originator of the message. If a subscriber
tries to broadcast/unicast this data to an un-subscribed host(s), the
packet will have to go through his router. In Framework II, the
routers are trusted and their functionality can be extended to check if
the watermark on the message identifies the sending client or not.
Based on this, the packet could be forwarded or dropped.

3) Greater Availability and Anti Denial of Service Attacks: In
traditional approaches, if the group-owner gets temporarily
disconnected from the multicast tree, the entire multicast halts since
no new members can join the group while existing members cannot
effectively leave the group. In the proposed approaches, even if the
group owner is temporarily disconnected, multicast join and leave
can proceed provided other routers (along the path from the member
to the group owner) possess the Multicast AC.

Since the MAC is distributed along the multicast tree, a denial of
service hack is not possible. In traditional approaches, a hacker can
disconnect the group owner from the rest of the tree, while this
won’t be of much consequence in the proposed approaches.

4) Simpler Authentication: In traditional approaches, clients were
required to possess a public/private key pair for authentication. A
message would be signed in the sender’s private key and his public
key would be used to verify the message at the receiving end. This
involves an additional encryption and decryption for every message
sent and received, over the usual data encryption. The proposed
models do not require this since ACs are trusted. When a client
wants to encrypt a message before multicasting it, he requests his
AC to do this. The AC appends its Principal’s identity which it has
originally verified (a one time decryption) using the client’s IC,
encrypts the entire payload and this is then multicast. At the
receiving end, the client’s AC decrypts the entire payload, strips the
header and reveals the Sending Principal and the original message.

5) Trust Assumptions: For all the above advantages to be gained,
the AC cannot/should not be compromised. This is the same amount
of trust in traditional networks where if the session key is
compromised, the secure multicast fails.

Future Work: Given the structure of today's networks, the
information dissemination would be highly improved by a secure
multicast protocol. As discussed in the earlier chapters, framework I
is appropriate for networks where hardware channels and nodes
cannot be trusted. However, framework II is easily applicable to
backbone networks where one can trust the nodes and channels. A
hybrid protocol could combine both the frameworks and produce an
efficient distributed secure multicast protocol that reduces both
computational and maintenance costs.

REFERENCES

[11 A Ballardie. Scalable Multicast Key Distribution.RFC 1949, May 1996.
[2] D. Estrin, D.Farinacci, et al. Protocol Independent Multicast - Sparse
Mode (PIM-SM):Protocol Specification. IETF draft, March 1997.

[3] Yang-hua Chu, Adrian Perrig and Dawn Song. SMIF: A Framework

(4]

(5]

for Secure Multicast Intercommunication. http:// gs193.sp.cs.cmu.edu
:8002/yhchu/research/secure-multicast.html., unpublished.

Roy H Campbell, Tin Qian, Willy Liao and Zhaoyu Lin. AC: A
Unified Security Model for Supporting Mobile, Dynamic and
Application Specific Delegation. White Paper, February 1996.

Sudha K. Varadarajan. Dynamic, Distributed, Secure Multicast on
Active Networks, Master’s Thesis, Jul 1999.

54

APPENDIX F

Securing the Node of an Active Network*

Zhaoyu Liu, Roy H. Campbell, M. Dennis Mickunas
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801
{zhaoyu, roy, mickunas} @cs.uiuc.edu

Abstract

Active networks aim to provide a software framework that enables network ap-
plications to customize the processing of their communications. Security is of crit-
ical importance to the success of active networking. This paper discusses the de-
sign of securing the node of an active network using active networking principles.
The secure node architecture includes an Active Node Operating System Security
API, an Active Security Guardian, and Quality of Protection (QoP) provisions.
The architecture supports highly customized and situational policies created by
users and applications dynamically. It permits active nodes to satisfy the applica-
tion specific dynamic security and protection requirements. It aids the application
of the “need-to-know” security principle and associates quality of protection with
network software and application security. The secure node architecture can pro-
vide fundamental base for securing the active network infrastructure.

Keywords: active networks, security API, active capability, active security guardian,
quality of protection

1 Introduction

Active networks aim to provide a software framework that enables network applica-
tions to customize the processing of their communications. The current active network
research focuses on the support of flexible, dynamically changing, fine-grained qual-
ity of service. There is little research on dynamic, flexible, and application specific
security features that exploit active networking. Similar to traditional networks, ac-
tive networks rely heavily on the underlying operating system for network security.
Current active network operating systems do not have explicit security support and
applications can not flexibly request security and protection requirements. The inflex-
ibility of the systems makes security policy and service customization complex and
often leads to security holes.

In this paper we present the design of securing the node of an active network using
active networking principles. We term this approach active security. The secure node
architecture is integrated into the active node operating system and includes:

*This research is supported by DARPA F30602-98-1-0192

55

e A node operating system security API
e An active security guardian
¢ Quality of protection (QoP) provisions

The secure node architecture supports highly customized and situational policies
created by users and applications dynamically and provides fundamental base for se-
curing the active network infrastructure.

The rest of the paper is organized as follows. Section 2 discusses the current secu-
rity research on active networks. Section 3 describes the architecture of a secure active
node in detail. It discusses the principles to design the node operating system security
API, and describes the design of active security guardian and the support of quality of
protection. Section 4 presents the current implementation and the future work of this
active security research and then the final section concludes the paper.

2 Reated Work

This section surveys the current security research on active networks. It provides back-
ground and motivation for the secure node architecture presented in the next section.

2.1 Active Network Security

It is difficult and complicated to retrofit security into Internet infrastructure [22]. The
active network research community considers security as an important part of the ini-
tial design. The security working group [23] of the active networks research commu-
nity has been instrumental in publicizing and highlighting the importance of security
in active networks. The group emphasizes the importance of incorporating security
into the initial design stage of the active network architecture itself. The current se-
curity related research in this field can be classified into two general categories. The
first one deals with the more traditional notion of security, which includes authentica-
tion, access control, policies and enforcement. The security working group [23] has
launched some important exploratory research in this direction. The second category
is mostly about protection of nodes from mobile code originating in foreign domains
and protection of active packets or code from malicious hosts [32]. The PLANet effort
[1] raises some of the issues associated with these protections. In addition the effort
also provides a bootstrapping module that ensures that the system configures itself cor-
rectly at startup or reboot time. The protection from mobile code is provided by using a
type-safe, resource limited, functional programming language with dynamic type ver-
ification. Mobile code can install protocols at nodes securely by using the extensibility
features provided by the language. Naccio of MIT [10] also belongs to this category.
The high-level application specified policies limit Java mobile code capability and thus
provide the necessary protection to mobile code execution host.

2.2 Active Node Operating Systems

The high-level architecture for active node is shown in Figure 1 [5]. A node oper-
ating system (NodeOS) manages the resources such as memory regions, CPU cycles

56

and link bandwidth, and multiplexes packets among multiple execution environments
(EEs) running on the node. In order to support the porting EEs to multiple underlying
NodeOSes, a NodeOS interface is specified by the NodeOS working group [28].

[Application| | Application| @ @ @

EE2

‘T

Managementf flm\& 77777777777777777777777
EE
N
Oth
Resouerrces O I.O.I l...l NodeOS

Store Channels

EE

Figure 1: Active Network Node Architecture

The objectives of current NodeOS interface are to support fast network packets
forwarding and fine-grained quality of service. The interface doesn’t explicitly spec-
ify any security API. It defines the following five primary abstractions of system re-
SOurces:

e Thread Pool: computation resource.
e Memory Pool: memory resource

e Channel: communication resource, including not only network bandwidth, but
also CPU cycles and memory space.

e File System: persistent storage resource.

e Flow: Generally speaking, a flow is a sequence of packets satisfying some pre-
defined attributes of interests. Typically flows are related to routing [27] and
quality of service [37], where groups of packets would receive similar treatment
in their network transport. Traditionally the flow concept can be used in both
datagram and connection-oriented communications. In active networks, the flow
concept is used to aggregate control and scheduling of the above four abstrac-
tions. It provides abstraction for accounting, admission control and scheduling
in the system. A flow can contain sub-flows and this results a hierarchical flow
structure.

Currently there are several NodeOS implementations in active networks research
community. They all comply to the general NodeOS interface specifications in various
degree:

e Joust: Joust [11] is a small, fast JavaOS implemented in Scout [21]. It includes
an efficient Java virtual machine and a Java JIT compiler. It explores how Java’s
various features interact with Scout’s modular approach to building systems.

57

The current NodeOS interface for active network nodes is mostly based on the
experiences with Joust.

e Janos: Janos is a Java-oriented active network operating system [4]. Its objec-
tive is to develop a principled local operating system for active network nodes,
which is oriented to executing untrusted Java byte code. The primary security
focus is resource management and control, with secondary objective of other
information security, performance, and technology transfer of broadly and sepa-
rately useful software components. Janos interface provides a sample Java bind-
ing of the NodeOS API abstractions.

e AMP System: AMP’s NodeOS is based on Exokernel operating system [12],
and uses Exokernel’s hierarchically-named capabilities [19] to support flexible
access control. Each Exokernel environment (similar to a Unix process) holds a
number of hierarchically-named capabilities, known as CAPs. The kernel main-
tains an array of CAPs and the environment specifies which CAP to use for each
system call or IPC operation.

e Bowman: The Bowman node operating system is built to support the CANES
EE. It is designed around three key abstractions: channel, a-flow, and state-store
[20]. A channel is the primary abstraction for communication and an a-flow
is the primary abstraction for computation. The state-store provides a mecha-
nism for a-flows to store and retrieve state that is indexed by a unique key. The
Bowman NodeOS interface can be extended to provide support for additional
abstractions such as queues, routing tables, user protocols and services.

In summary, the current active node operating systems research focuses on high
performance, extensibility, and resource management. There is little research on ex-
plicit security support for authentication, authorization, integrity, and dynamic access
control. The secure node architecture presented in the next section addresses the above
security problems in active networks. It is complementary to the current NodeOS re-
search and augments its functionality. It can be seamlessly integrated into the current
NodeOS implementations to provide dynamic security services and access control.

3 Securingthe Node

The architecture of the secure node of an active network is shown in Figure 2. The se-
cure node architecture includes a NodeOS Security API, an Active Security Guardian,
and Quality of Protection (QoP) provisions. The API provides support of authenti-
cation, authorization, integrity and access control services to EEs and active applica-
tions. It is implemented by a security library. An Active capability (AC) [18, 8, 7] is
used to support flexible distributed dynamic security policies. Essentially an AC is an
executable Java code which concisely represents dynamic security policies and mech-
anisms. The security guardian evaluates ACs in a secure sandbox environment and
enforces the security requirements of AC evaluation results. It obtains ACs securely
through the AC communication protocol. By using the NodeOS security API, active
security guardian, and active capabilities, it is feasible to provide quality of protection
to active applications.

58

The rest of the section is organized as follows. We first briefly describe the active
capability, Role Based Access Control policy type and active security guardian con-
cepts. These concepts are developed and used in the Cherubim and Seraphim projects
[7, 18, 6]. Then we present the NodeOS security API and quality of protection provi-
sions in detail. Finally we discuss the low-level code safety and the EE security.

,,,,,,,,,,,,,,,,,,,

NodeOS

‘ Security API

Security Guardian

AC AC
Evaluation Enforcement
Engine Engine

AC
Communication

Security Protocol

Library

Figure 2: Secure Node Structure

3.1 Active Capability

Active capabilities are used to support flexible distributed dynamic security policies
and services control, based on the similar active principles employed by active net-
works [18, 7]. Unlike a traditional capability, which is merely a static authorization
credential that encodes the principal and the permissions associated with the principal,
an active capability is a customized piece of code that encodes the type of access con-
trol policy and other constraints used in the access control decision making process. In
our implementation, an AC is an executable Java code which concisely represents dy-
namic security policies and mechanisms. In addition, an active capability is protected
by digital signatures, resides in user space and can be freely passed around.

By using an active capability various situational policies that depend on system
attributes can be encoded. For instance, by writing a piece of code that checks the
current system time and compares it with a value stored in the active capability one
can introduce a policy that expires after a certain time deadline. Similarly, various
enforcement and revocation schemes based on other attributes like quota, history, and
information content can be implemented. These schemes are very useful in an open
internetworking environment with diverse application requirements. An application
can use quota-based revocation to limit the amount of system resources a client can
consume.

An active capability could carry all policy information of decision in its code. This
heavy way of implementation is not elegant and efficient. A better way is to have a

59

generic policy framework to support different various policy types and ACs rely on
it for context. An application presents an active capability along with its regular data
or protocol capsules to the active router’s security guardian at execution time. The
access control policy type and user credentials are extracted from the capability. The
remote router’s security guardian recreates the context of the policy type within its
policy framework. If at any point during this process, the policy framework discovers
that it does not have an implementation for the type of the policy, it downloads the
code dynamically into the framework, using the underlying active network. It then
instantiates the run-time parameters associated with the application in its sandbox-like
environment and executes the active capability in this environment. Based on the result
of the evaluation of this active capability, the access control decision is enforced.

The principal of the active capability, which can be a user, a role, or other principal,
must be authenticated by a trusted authority. The trusted authority acts as the policy
server in our system. This entity is responsible for generating and keeping track of
the active capabilities. Usually one or more policy servers are associated with each
protection domain. Application programs contact their nearest or least-loaded server
and obtain the active capability dynamically.

3.2 RoleBased Access Control (RBAC) Palicy

The policy type used for dynamic access control in the architecture is Role Based
Access Control (RBAC) policy type, which is the most flexible type of access control
policy [33]. A Role Based Access Control policy, as the name suggests, uses the
concept of a role as its basis for representing permissions [33]. It is a form of access
control that emerges in the context of security policies for organizations. A role is
chiefly a semantic construct that forms the basis for an access control policy. With
RBAC, system administrators create roles according to the job functions performed in
an organization, grant permissions to those roles, and then assign users to the roles
on the basis of their specific job responsibilities and qualifications. The idea is that
the particular combination of users and permissions brought together by a role tends to
change over time while the permissions associated with a role are themselves relatively
more stable.

The biggest advantage that RBAC has over other forms of access control is that it
is extremely intuitive to use and maps easily to real-world situations. A hierarchy of
roles with senior roles inheriting all the permissions of junior roles closely follows the
structure of organizations. The access control policy in RBAC is embodied in compo-
nents such as role-permission, user-role and role-role relationships. These components
collectively determine whether a particular user is allowed access to a particular op-
eration on a particular component. These individual components can be easily (and
intuitively) configured to provide the required degree of access control. For exam-
ple, adding a new user to a system would merely involve assigning appropriate roles
to the user according to the user’s functions in the organization. Likewise, changing
the nature of, for example, printer access, for all managers in an organization can be
accomplished by merely changing the permissions with the manager role in the orga-
nization. All managers can immediately see the effects of the change.

RBAC is the most flexible type of access control policy. All RBAC subjects are

60

assigned roles. Each role represents a particular set of objects and the allowed op-
erations on each object. The major benefits of this aggregation are the considerable
saving in terms of space and simplification in terms of management and enforcement.
RBAC allows users to create policies with more sophisticated specifications than sim-
ple DAC, DDAC or MAC. A single user may have many different roles, and different
permissions depending on the current role. Different constraints related to role and
privilege may be enforced in RBAC. The RBAC constraints supported in our sys-
tem include three important ones: mutually exclusive roles/permissions, prerequisite
roles/permissions and cardinality constraints.

3.3 Active Security Guardian

The security guardian in the architecture is to support AC evaluation and enforcement.
All accesses to node resources must go through security guardian which use the secu-
rity library services to verify the signature on the active capability.

The security guardian’s functionality is similar to traditional reference monitor,
with several major differences. In traditional systems, a reference monitor is interposed
between the subjects and objects to control subjects’ access to objects based on access
authorizations (Figure 3). The traditional reference monitor is passive in the sense that
it never initiates actions but only reacts when it receives an operation message. Access
through the reference monitor is either granted or denied corresponding to a yes or
no access evaluation result. The power and functionality of the traditional passive
reference monitor are limited [2].

‘ Authorization Database‘
|
4{ Reference Monitor
|
Audit Trail

Figure 3: Reference Monitor Concept

With the use of ACs, the security guardian is no longer passive. To make it active,
first we need to extend ACs. In addition to access control decision information, ACs
may carry other security information. For example, an AC may specify a particular
encryption key length for a particular region or country together with access control
information. To carry out the the intended security operations specified by ACs, an
evaluation engine and an enforcement engine are included in the security guardian.
The evaluation engine evaluates ACs in a secure sandbox. The enforcement engine
interacts with other NodeOS components to enforce faithfully the security operations,
using the security library services. The enforcement engine can initiate security actions
based on ACs requirements. So the security guardian may trigger or initiate security
actions. The triggers can be intrusion detection alarms, or explicit requests by EESs or
applications that use active networking features. For example, the security guardian
can initiate installing firewalls dynamically.

61

3.4 NodeOS Security API

As mentioned above, the current NodeOS API [28] focuses on fast network packet-
forwarding and fine-grained quality of service. It provides mainly an interface for re-
source management without explicit security support. As a complement, the NodeOS
security APl is designed to provide explicit security support to EEs and active applica-
tions. It exports security services including authentication, authorization and integrity
to EEs and active applications. The security API is defined as generically as possible
to accommodate a wide variety of implementations.

A standard, generic security APl promotes easy, widespread development and use
of secure applications utilizing security. It allows combinations of cryptographic secu-
rity that support a range of protection levels. The API and different protection levels
support the needs of secure international software applications utilizing cryptography,
factoring law enforcement and national security interests. They enable flexible, low-
cost methods for cryptographically protecting sensitive information.

An API should satisfy the needs of both simple and sophisticated applications and
should be easy to use. It should require applications to have a minimal degree of
cryptographic awareness. According to NSA [34], there are several considerations for
security API design:

e Algorithm Independence

Application Independence

Cryptomodule Independence

Degree of Security Awareness

Modular Design and Auxiliary Services

Safe programming
e Security Perimeter

We advocate a NodeOS security API that is generic and compatible with available
security API standards. Currently several related high-level APls are available in the
research community:

1. Generic Security Service APl (GSS API): The GSS API is designed specifically
for network communication protocols and provides additional support for se-
curing network communications after authentication [15]. It provides protection
for communication using authentication, integrity, and/or confidentiality secu-
rity services. Its extensions support access control and delegation [26].

2. Pluggable Authentication Module AP1 (PAM API): This supports pluggable au-
thentication in stand-alone, non-connection-oriented environments for users and
provides system level authentication service [31]. It also provides a uniform
interface for authentication that is compatible with many authentication provi-
sions, and thus provides complementary functionality to the GSS API. The Java
Authentication and Authorization System API (JAAS API) bases its authentica-
tion on the PAM API in the Java language environment [14].

62

3. Generic Authorization and Access Control Application Program Interface (GAA
API): The GAA API supports authorization decisions for applications in a dis-
tributed environment [30, 29]. An application invokes the GAA API functions
to determine if a requested operation or set of operations is authorized or if
additional checks are necessary. An application can also use the GAA API to
request access control information about a particular resource. The GAA API
can be used to obtain a principal’s access rights on an object or a resource and
supports the needs of most applications. Developers don’t need to design their
own authorization mechanisms.

The NodeOS API combines the above APIs to support authentication, authoriza-
tion, integrity, and access control. A security library implements the NodeOS security
API. The API is based on the active network flow concept and supports end-to-end
security, hop-to-hop security, and the active network protocols including routing pro-
tocols.

Authentication| | Authorization| |Security Services |

|PAM API| | GAA API | GSSAPI
X.509, Active Capability,
Password-based, PolicyMaker,
Kerberos, ACL
SESAME, '
Etc. Etc.

Security

Guardian
Public Key AP I

Dynamic Poli
X509 PK| yFrameworkcy
RFC 2510
PKIX
NodeOS

Figure 4: NodeOS API Design

The NodeOS security API has three major components as shown in Figure 4, the
authentication API, the authorization API, and the security services API:

e The authentication APl authenticates EEs, AAs, or users. It is based on the PAM
API. As shown in Figure 4, a possible implementation of the authentication API
uses the X.509 public key infrastructure (PKIX). RFC 2510, the Internet X.509
Public Key Infrastructure Certificate Management Protocol, provides a detailed
description of the security functions supported by PKIX.

63

e The authorization API helps protect NodeOS resources. It is based on the GAA
API. The security guardian in the Figure 4 supports access-control policy eval-
uation and enforcement. The security guardian’s functionality is similar to a
traditional reference monitor or to the role of the checking software that is in-
voked when a user process requests a supervisor privilege in a traditional operat-
ing system like UNIX. All accesses to node resources must go through security
guardian. One possible implementation of an access control mechanism is the
active capability described previously.

e The security services API provides security services such as encryption and dig-
ital signatures. The security services API is based on the GSS API.

Our focus is to export core and essential security functionality to the EEs and ac-
tive applications while securing the active network infrastructure. Thus, the EEs, the
active applications, and the NodeOS itself can use this API for security services, for
example, to support hop-hop authentication and security. The implementation of the
API must be secure if key management and principal identification are to be secure and
thus we locate the implementation of the API within the NodeOS and below the se-
curity guardian to take advantage of any hardware protection available to the NodeOS
implementation.

The NodeOS Security API we have described is comprehensive but not exhaus-
tive. It can be extended easily for future security enhancements. For example, it can
be extended to include the IDUP-GSS-API later, if necessary. The IDUP-GSS-API,
Independent Data Unit Protection Generic Security Service API, is similar to GSS
API, but is designed for independent data unit protection [3]. It extends the GSS API
for applications requiring protection of a generic data unit (such as a file or message).
The protection of one data unit is independent of the protection of any other data unit
and independent of any concurrent contact with designated receivers of the data unit.

3.5 Quality of Protection

By using the NodeOS security API, active security guardian, and active networking
features, it is feasible to provide quality of protection to active applications. Similar
to QoS, QoP supports customized, flexible security and protection requirements of
applications. For example, applications can specify routing paths based on security
and protection requirements.

To provide quality of protection, the NodeOS API needs to be enhanced with dif-
ferent security and protection options. These options are supported by the underlying
security library implementation in the NodeOS. In addition the security and protection
features need to be characterized. Some sample QoP characteristics include:

Key length of security algorithms

Robustness or strength of security algorithms

Security mechanisms for authentication and privacy

Trust values for developers/vendors of security implementations: One may trust
more the implementation of security algorithms by reputable vendors.

64

e Assurance level of a router NodeOS: The orange book defines the assurance
class for an operating system as D, C1, C2, B1, B2, B3 or Al [9]. A router
NodeOS with higher assurance class is more trustworthy.

e Geographical location of routers: One country may not trust the protection pro-
vided by the routers in enemy countries.

Active capabilities are used to specify, control and manage QoP. A trust party cre-
ates ACs upon the requests of applications.

With a NodeOS Security API, an Active Security Guardian, and Quality of Pro-
tection (QoP) provisions, the secure node can provide active security features to ap-
plications. Applications of active security include a security-customized routing path
specified by an application and stronger protection under intrusion. For quality of ser-
vice applications, both time constraints and security features are important [24]. The
QoP allows dynamic reconfiguration and tradeoffs between security protection and
satisfaction of the QoS constraints. The protection may be provided on per-service,
per-flow, or per-capsule base to optimize performance overhead.

3.6 Low-level Code Safety

The evaluation engine of security guardian relies on Java language for low-level code
safety. The minimum requirements for low-level code safety are control flow safety,
memory safety, and stack safety [13]. Currently we use the Java byte code verifier
[36] provided by Java language for low-level code safety. Before loading a class, the
verifier performs data-flow analysis on the class code to verify that it is type safe and
that all control-flow instructions jump to valid locations [17].

There are several other approaches for low-level code safety. The PLAN project [1]
uses programming language techniques to address the code safety problem. Capsules
are written using a strongly typed, resource limited language and dynamic code ex-
tensions are secured by using type safety and other mechanisms. Another approach is
Proof-Carrying Code (PCC) [25]. Besides regular program code, PCC carries a proof
that the program satisfies certain properties. The proof is verified before the execution
of the code. The generation of a proof may be complex and time consuming, while its
verification should be simple and efficient. Software fault isolation (SFI) [35] provides
another alternative for low-level code safety. It uses special code transformations and
bit masks to ensure that memory operations and jumps access only the correct memory
ranges.

In summary, there are a variety of different mechanisms and protocols proposed.
Each method has its own advantages and disadvantages. Ultimately the application
must be given the choice to pick the mechanism that is most suitable for its purpose.
The secure node architecture is generic enough to allow all these mechanisms to co-
exist.

3.7 Discussion

An execution environment can also implement security requirements within itself [23].
It can set up security policies for active applications running inside it. While this paper

65

does not focus on the EE security, the same design principles discussed in this paper
can be applied to the EE security.

4 Current Status and Future Wor k

We have a prototype implementation of secure node architecture, with a simplified ver-
sion of security guardian. The security guardian is used in the Seraphim architecture
framework [18, 6]. The security guardian of NodeOS can obtain ACs from a trusted
policy server and evaluate them. The evaluation result of a AC is either a yes or no.
The AC is used to control the access to the NodeOS resources, such as channels. Two
innovative applications [18, 16] are implemented to show the benefits of the proposed
research. They add little performance overhead to the network.

We are currently extending the prototype to a full implementation of the secure
node architecture. We plan to demonstrate the power of active security by various
applications. The applications include secure routing protocols, security-customized
routing paths specified by an application and strengthened protection under intrusion.
We also plan to investigate the dynamic reconfiguration and tradeoffs between security
protection and satisfaction of the QoS constraints.

5 Conclusions

This paper describes the design of securing the node of an active network. It shows
that such a secure node architecture, based on active network principles, can provide
fundamental base for securing the active network infrastructure and supporting appli-
cation specific dynamic security requirements and policies. The research in this paper
complements the current active network research and augments its functionality. The
secure node architecture provides authentication, authorization, integrity, dynamic ac-
cess control, and quality of protection for active applications.

The flexibility and expressibility afforded by the secure node enables us to imple-
ment a multitude of diverse, innovative and exciting applications. These applications
exploit the active networking paradigm without compromising the security of the in-
frastructure. In addition, our architecture lays the ground rules for seamless integration
with parallel and ongoing efforts in the active networks community. The same design
principles can be applied to the security support for the execution environment of an
active node.

6 Acknowledgments

The authors would like to thank other current Seraphim project members, Prasad Nal-
durg and Seung Vi, for their contributions to the design and implementation of the
Seraphim system. Part of the system is presented in Section 3.1, Section 3.2 and
Section 3.3. The authors would also like to thank Jalal Al-Muhtadi for the useful
discussions on NodeOS security API design.

66

References

(1]
(2]

(3]
(4]

(5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

The SwitchWare Project Homepage http://www.cis.upenn.edu/~switchware/.

M. D. Abrams and J. D. Moffett. A higher level of computer security through active
policies. Computer & Security, 14(2):147 — 157, 1995.

C. Adams. Independent Data Unit Protection Generic Security Service Application Pro-
gram Interface (IDUP-GSS-API). RFC 2479, December 1998.

Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C. Hsieh, and Jay Lepreau. Java
operating systems: design and implementation. Technical Report 98—015, Department of
Computer Science, University of Utah, August 1998.

K. Calvert et al. Architectural framework for active networks. AN Architecture Working
Group, Draft, 1998.

Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, Prasad Naldurg, and Seung Yi.
Seraphim: dynamic interoperable security architecture for active networks. In IEEE OPE-
NARCH 2000, Tel-Aviv, Israel, March 26-27, 2000.

Roy H. Campbell, M. Dennis Mickunas, Tin Qian, and Zhaoyu Liu. An agent-based archi-
tecture for supporting application aware security. In the Workshop on Research Directions
for the Next Generation Internet, May 1997.

Roy H. Campbell and Tin Qian. Dynamic agent-based security architecture for mobile
computers. In the Second International Conference on Parallel and Distributed Computing
and Networks, Brisbane, Australia, December 1998.

National Computer Security Center. The Interpreted Trusted Computer
System Evaluation Criteria Requirements, July 1995. Also available at
http://www.radium.ncsc.mil/tpep/library/tcsec/ITCSEC.ps.

David Evans and Andrew Twyman. Flexible policy-directed code safety. In IEEE Sympo-
sium on Security and Privacy, Oakland, CA, May 9-12, 1999.

John Hartman, Larry Peterson, Andy Bavier, Peter Bigot, Patrick Bridges, Brady Montz,
Rob Piltz, Todd Proebsting, and Oliver Spatscheck. Joust: A platform for liquid software.
IEEE Computer, April 1999.

M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Bricefio, Rus-
sell Hunt, David Maziéres, Thomas Pinckney, Robert Grimm, John Jannotti, and Kenneth
Mackenzie. Application performance and flexibility on exokernel systems. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles (SOSP *97), pages 52-65,
Saint-Mald, France, October 1997.

Dexter Kozen. Efficient code certification. Technical Report 98-1661, Department of
Computer Science, Cornell University, January 1998.

C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers. User authentication and autho-
rization in the Java platform. In 15th Annual Computer Security Applications Conference,
Phoenix, AZ, December 6-10, 1999.

J. Linn. Generic Security Service Application Program Interface, Version 2. RFC 2078,
January 1997.

Zhaoyu Liu, Roy H. Campbell, Sudha K. Varadarajan, Prasad Naldurg, Seung Yi, and
M. Dennis Mickunas. Flexible secure multicasting in active networks. In International
Workshop on Group Computation and Communications, Taipei, Taiwan, April 2000.

Zhaoyu Liu, M. Dennis Mickunas, and Roy H. Campbell. Secure information flow in mo-
bile bootstrapping process. In International Workshop on Wireless Networks and Mobile
Computing, Taipei, Taiwan, April 2000.

67

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian, Roy H. Campbell, and M. Dennis Mick-
unas. An agent based architecture for supporting application level security. In the DARPA
Information Survivability Conference and Exposition, Hilton Head Island, SC, January
25-27, 2000.

David Maziéres and M. Frans Kaashoek. Secure applications need flexible operating sys-
tems. In Proceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI),
pages 56-61, Chatham, Cape Cod, Massachusetts, May 1997. IEEE Computer Society.

S. Merugu, S. Bhattachajee, E. Zegura, and K. Calvert. Bowman: A Node OS for active
networks. In Proceedings of INFOCOM 2000, March 2000.

D. Mosberger and L. Peterson. Making paths explicit in the scout operating system. In
Proceedings of OSDI "96, pages 153-168, October 1996.

S. Murphy, O. Gudmundsson, R. Mundy, and B. Wellington. Retrofitting security into
internet infrastructure protocols. In the DARPA Information Survivability Conference and
Exposition, Hilton Head Island, SC, January 25-27, 2000.

Sandra Murphy et al. Security architecture for active nets. AN Security Working Group,
July 15, 1998.

Klara Nahrstedt and Duangdao Wichadakul. QoS-aware active gateway for multimedia
communication. In Proceedings of 6th International Workshop, IDMS ’99, Toulouse,
France, October 1999. Lecture Notes in Computer Science 1718, Springer.

G. C. Necula. Proof-carrying code. In Principles of Programming Languages (POPL *97),
pages 106-119, January 1997.

T. Parker and D. Pinkas. Extended Generic Security Service APIs: XGSS-APIs Access
control and delegation extensions. Internet-Draft, November 1998.

C. Partridge. Using the flow label field in IPv6. RFC 1809, June 1995.

L. Paterson et al. NodeOS interface specifications. AN NodeOS Working Group, Draft,
1999.

T. Ryutov and C. Neuman. Access Control Framework for Distributed Applications.
Internet-Draft, March 2000.

T. Ryutov and C. Neuman. Representation and evaluation of security policies for dis-
tributed system services. In the DARPA Information Survivability Conference and Exposi-
tion, Hilton Head Island, SC, January 25-27, 2000.

V. Samar and C. Lai. Making login services independent from authentication technologies.
In Proceedings of the SunSoft Developer’s Conference, March 1996.

Tomas Sander and Christian F. Tschudin. Protecting mobile agents against malicious hosts.
In Mobile Agent Security, LNCS 1419. 1998.

R. S. Sandhu and E. J. Coyne. Role-based access control models. IEEE Computer, 29(2),
February 1996.

NSA Cross Organization CAPI Team. Security Service API: Cryptographic APl Recom-
mendation, July 1996. Second Edition.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In SOSP ’93.

Frank Yelin. Low-level security in Java. In WWW4 Conference, December 1995.

L. Zhang, S. E. Deering, D. Estrin, S. Shenker, and D. Zappala. RAVP: A new resource
ReSerVation Protocol. IEEE Network Magazine, (5), 1993.

68

APPENDIX G

PLUGGABLE ACTIVE SECURITY FOR ACTIVE NETWORKS

ZHAOYU LIU, PRASAD NALDURG, SEUNG YI, ROY H. CAMPBELL, M. DENNIS MICKUNAS
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801
{zhaoyu, naldurg, seungyi, roy, mickunas} @cs.uiuc.edu

ABSTRACT

Security is of critical importance to the success of
active networking. In addition, we argue that active
security based on active networking principles can offer a
wide range of opportunities to build better security
systems. This paper describes the integration of active
security into a software system implementing the active
network architecture. The paper demonstrates that an
extensible, reconfigurable security architecture based on
active networking is flexible and accommodates a wide
variety of security policies and mechanisms. The active
security provides users the ability to dynamically create
and enforce highly customized and situational policies for
their applications. The active security also permits
security systems to react to intrusion and can aid the
application of the "need-to-know" security principle to
network software and application security.

Keywords:. active networks, security, reconfigurable,
active capability, interoperability

1INTRODUCTION

An active network provides a software framework
that enables network applications to customize the
processing of their data [1, 2]. Active applications inject
capsules that contain programs (along with data) into the
network. Active routers dynamicaly install these
programs and execute them on the data. Though this
facilitates fast protocol and service deployment it aso
makes the routers vulnerable to attacks from arbitrary
user-code. Securing the routing infrastructure against
threats and exposures remains a major challenge in this
paradigm [3].

Traditional networks rely on the underlying
operating system to implement security mechanisms and
policies. The traditional definition of security in a
network environment includes authentication, access
control, and encryption. Applications and routers establish
a basis for trust by mutual authentication. To protect the
integrity of the contents of the capsules, encryption and
digital signatures can be employed. Access control
mechanisms or policies are defined and enforced to

69

provide controlled access to the router resources. In
addition, active network routers have to provide support
to
e prevent malicious behavior of arbitrary user code
and
e protect the user code and data from malicious
routers

Though a wide range of policy types [4] and
mechanisms [5] have been proposed, underlying
operating systems implement only a static subset of these
policies and mechanisms. Applications that want to use
sophisticated or customized policies have to make do with
lesser or weaker security guarantees. The overhead
associated with adding new policies and mechanisms can
also be prohihitive.

In order to exploit the active network flexibility, we
have developed a dynamic, fully extensible, interoperable
security architecture based on and built into the
underlying active network architecture [6]. We term this
approach active security [7]. The security architecture
enables both dtatic and runtime application-aware
reconfiguration [8]. Adaptation alows the security
provisions of the network to meet specific individual
security requirements within different application
scenarios. Applications can request specific security
policy instantiations on specific parts of the network,
distributing the relevant security policies on a "need-to-
know" basis. Alternatively, changes in the security
policies for the network can be triggered by the
invalidation of a trust model, perhaps by the detection of
intrusion or other abnormal behavior.

In this paper we describe the integration of active
security into a software system (Bowman and CANES
[13, 14]) implementing the active network architecture
[12] to showcase the above claimed advantages. Our
active security system is composable and can be easily
plugged into current active network systems. The
integration demonstrates that the active security can
provide users the ability to dynamically create and
enforce highly customized and situational policies for
their applications. It also shows that the active security
can permit security systems to react to intrusion and can

aid the application of the "need-to-know" security
principle to network software and application security.

The rest of the paper is organized as follows.
Section 2 overviews our Seraphim active security
architecture. Section 3 describes the integration of our
architecture into a software system implementing the
active network architecture. Section 4 presents an
application example to show the flexibility of the active
security based on the current implementation. Section 5
shows the preliminary performance measurement. Section
6 describes the future plan of the integration. The last
section concludes this paper.

2 SERAPHIM: ACTIVE SECURITY
ARCHITECTURE

Seraphim is a dynamic, flexible, and application
specific security architecture that exploits the active,
dynamic functionality provided by active networking
using an active capability (AC) [6, 9]. Essentialy an AC
is an executable Java code, which concisely represents
dynamic security policies and mechanisms. ACs are
evaluated by a security guardian in a secure sandbox
environment and the security guardian enforces the
security requirements of AC evaluation results. We
describe the architecture in more detail next.

21ACTIVE CAPABILITY

Active capabilities are used to support flexible
distributed dynamic security policies and services control
employing the same active principles as active networks
[6, 9]. Unlike a traditional capability, which is merely a
static authorization credential that encodes the principal
and the permissions associated with the principa, an
active capability is a customized piece of code that
encodes the type of access control policy and other
constraints used in the access control decision making
process. In our implementation, an AC is an executable
Java code that concisely represents dynamic security
policies and mechanisms. In addition, an active capability
is protected by digital signatures, resides in user space and
can be freely passed around.

An active capability can carry al the decisions
policy information in its code. This way of
implementation is not modular, elegant and efficient. A
better way is to have a generic policy framework that
supports different various policy types. ACs use the
framework to implement specific policies. An application
presents an active capability along with its regular data or
protocol capsules to the active router’s security guardian
at execution time. The access control policy type and user
credentials are extracted from the capability. The remote
router's security guardian recreates the context of the
policy type within its policy framework. If at any point
during this process the policy framework discovers that it
does not have an implementation for the type of the

70

policy, it downloads the code dynamicaly into the
framework, using the underlying active network. It then
instantiates the run-time parameters associated with the
application in its sandbox-like environment and executes
the active capability in this environment. Based on the
result of the evaluation of this active capability, the access
control decision is enforced.

The principal of the active capability, which can be
auser, arole, or other principal, must be authenticated by
atrusted authority. The trusted authority acts as the policy
server in our system. The policy server is responsible for
generating ACs, serving ACs to applications and keeping
track of ACs. Usually one or more policy servers are
associated with each protection domain. Application
programs contact their nearest or least-loaded server and
obtain the active capability dynamically.

2.2POLICY FRAMEWORK

The policy framework is an object-oriented and
coded in Java. This alows users and commercia
organizations to specify policies tailored to their specific
operational needs. The framework itself is a hierarchy of
classes as shown in Figure 1.

DDAC
A
‘DAC \ \ MAC‘ ‘RBAC‘
A A 4
oS Interfaces
A A
Primitives

Figure 1: Component-level Map of the
Policy Framework

The framework is dynamically configurable and
extensible. The classes at the bottom of the framework are
mostly abstract and are mainly used to represent
mathematical concepts such as sets and mappings. These
classes form the basis for a hierarchy of successively
incremented specialized classes representing concepts
such as labels and access control lists. Finaly, at the top
of the framework are classes that can be used to represent
avariety of generic policy forms.

The policy framework supports the following
common types of access control: Mandatory (MAC),

Discretionary (DAC), Double Discretionary (DDAC), and
Role-based (RBAC) [10]. More application specific
access control policy systems can be easily extended from
this object-oriented framework ([11] provides severa
good examples). In our model, we can specify not only
the traditional <subject, object, operation> access control
triple, but also include a resource limit on usage,
situational decision rules, constraints and dependences,
e.g., based on current time of the day or current role of the
principal. The main policy type we use for active
networks is RBAC because of its flexibility. We will
describe its usage in more detail later.

2.3 SECURITY GUARDIAN

The security guardian in the architecture supports
AC evauation and enforcement. The security guardian’s
functionality is similar to a traditional reference monitor.
All accesses to node resources must go through the
security guardian. The security guardian uses the security
library services to verify the signature on the active
capability. To carry out the intended security operations
specified by ACs, an evaluation engine and an
enforcement engine are included in the security guardian.
The evaluation engine evaluates ACs in a secure sandbox.
The enforcement engine interacts with other NodeOS
components to enforce faithfully the security operations,
using the security library services. The enforcement
engine can initiate security actions based on ACs
requirements. So the security guardian may trigger or
initiate security actions. The triggers can be intrusion
detection alarms, or explicit requests by execution
environments (EES) or applications that use active
networking features. For example, the security guardian
can initiate installing firewalls dynamically [6].

3INTEGRATION OF SECURITY INTO
ACTIVE ARCHITECTURE

This section describes the integration of the above
security system into a software system implementing the
active network architecture [12]. The software system has
two partss the Bowman NodeOS and the CANEs
execution environment [13, 14]. We first briefly overview
the Bowman and CANEs systems, and then present the
integration.

3.1 OVERVIEW OF BOWMAN AND CANES

The Bowman node operating system is built to
support the CANEs EE. It is designed around three key
abstractions: channel, a-flow, and state-store. A channel
is the primary abstraction for communication and an a
flow is the primary abstraction for computation. The
state-store provides a mechanism for a-flows to store and
retrieve state that is indexed by a unique key. The
Bowman is layered on top of a host operating system that

71

provides lower level services. To make the elementary
Bowman channel, aflow, and state-store abstractions
more useful for users, Bowman provides an extension
mechanism that is analogous to loadable modules in
traditional operating systems. Using extensions, the
Bowman NodeOS interface can be extended to provide
support for additional abstractions such as queues, routing
tables, user protocols and services ([15] provides a more
complete NodeOS API).

The CANESs EE is built on the top of the Bowman
NodeOS. It provides a composition framework for active
services based on customizing a generic underlying
program by injecting code to run in specific points called
dlots. The composition model basically has two parts.
The first part, the underlying program, is a fixed part for
uniform processing applied to every packet. The second
part, the injected program, is a dynamic part that provides
user-specific functionality for routing and processing the
packets. The injected program is dynamically executed at
the appropriate specific points (dots) in the underlying
program. CANES uses signaling messages to control the
injected programs.

CANEs API

CANESEE

Policy Administrator

CANEs Signalling A—flowe

Security Guardian ~ (JNI, JVM)

System Thread %8

Bowman NodeOS
Host OS

Policy Server

Figure 2: Integration of Active Security into
Bowman and CANEs

3.2INTEGRATION

The integration of active security, CANEs and
Bowman is shown in Figure 2. The security guardian is a
thin layer between the Bowman NodeOS and the CANEs
EE. The Bowman NodeOS interfaces are replaced by the
security interfaces. The security guardian does the
following security checkings [16]:

e Authentication: It verifies the identification and
the signature of the request messages. We use
X.509 certificates [17] and a simple public key
infrastructure (PK1) for authentication.

RBAC

default_role, root@null, router A, o_aflow_create default

/

Router A

&

e. Router B

Flow

Root can not create flow on Router B
No capability found

Figure 3: First Demo Scenario

e Authorization: If authentication succeeds, it then
checks the access permission for the requests.
Thisrequires fetching and evaluating ACs.

Since Bowman and CANEs are written in C to
obtain high performance and the Seraphim architecture is
implemented in Java for interoperability and security
purpose, we use JNI (Java Native Interface) in Bowman
and CANEs to invoke the security guardian in Java.
When Bowman starts, it starts the security guardian
component that invokes Sun JVM. Each security check
from CANESs to the Bowman NodeOS security interface
is attached to the Sun JVM as a Java thread. After the
checking, the Javathread is detached and destroyed.

The security guardian obtains ACs through a secure
channel from the policy server. The policy administrator
uses a GUI that allows users or system administrators to
create and define policy specific attributes and to generate
active capabilities. The GUI alows the administrator to
create role definitions and associate users and permissions
with the role, and supports other functionality (see [10]
for more details).

4 APPLICATION EXAMPLE

Changeto MAC

Admin AC: Revoke RBAC, Grant MAC

A Router B
MAC wAc
L1 L2

Figure 5: Third Demo Scenario

72

RBAC

‘default_rol e, root@null, router B, o_aflow_create default

Router A Router B
® e 0

RBAC policy admin
installs new capability and
root can create flow now

Figure 4. Second Demo Scenario

We have implemented a preliminary version of the
authorization part of the integration. Based on the
authorization part, we have developed an example
application scenario, which is shown in Figure 3, 4, 5 and
6. Figure 3 shows that on behalf of user root@null of role
default_role, the CANEs EE can create an a-flow on the
router A, but not on the router B. In order to have a
complete flow path from the user root@null to the router
B, we can dynamically create a new AC through the
policy GUI and install it at the router B. Now the CANES
EE can create an a-flow on both router A and B on behalf
of the user root@null of role default_role (Figure 4). The
policy type of Figure 3 and 4 is RBAC. If we want to
have a stricter and less flexible policy we can dynamically
change RBAC to MAC (Figure 5). In this case, the trigger
for the policy type change may be an intrusion detection
aarm. In MAC policy every entity is assigned a security
level. A hierarchy is defined in terms of these levels.
Subjects with lower levels cannot read from objects of
higher levels and subjects with higher levels cannot write
to objects of lower levels. We assume that the MAC level
L1 is higher than MAC level L2. This means that the
router B has lower security level than the router A. So if
user root@null is also at security level L1, then user
root@null can create an a-flow at only the router A since
user root@null cannot write to router B (Figure 6).

MAC

‘Iabel L1, root@null, router A, o_aflow_create_default ‘

Router A

L1

(root@null, L1) can not writeto (B, L2)
user root@null could be compromised

Figure 6: Fourth Demo Scenario

5 PERFORMANCE

The overhead that the integration introduces
includes the JNI invocation overhead and the regular
security overhead. The regular security overhead, which
includes AC fetching and evaluation, is necessary for
flexible access control and has been studied previously
[6]. We used a dsmple active ping application
(atraceroute) between two machines A and B to measure
the NI invocation overhead. Machine A is a Sun Ultra-5
machine, and machine B is a Sun Ultra-2 machine. Both
A and B are on the same 100Mbps Ethernet LAN.
Machine A sends an atraceroute to machine B that is
running the Bowman NodeOS. We measure the round trip
time (RTT) of the atraceroute command with and without
JNI invocation (When with JNI invocation, we let
security guardian simply return a true value in order not
to include the regular security overhead). Without any
optimization, the RTT is about 2400ms without JINI
invocation and about 9100ms with NI invocation.

In order to improve the performance, we plan to
have a leaner JVM replace the current Sun JVM. A
possible choice is Kaffe VM [18]. A more dramatic
improvement would be to use a simpler language than
Java for ACs. The sandbox evaluation engine of the
security guardian of the simpler language must be
efficient.

6 FUTURE PLAN

We plan to extend the current integration
implementation to provide security checking for all
CANEs sdignaing messages. We plan to add
authentication and dynamic revocation to the integration,
using the security NodeOS API [16]. We aso plan to
integrate the Denial of Service prevention features into
the system. Finally we will install an experimental setup
for the flexible, secure, and composable demanded video
distribution application [19] to demonstrate the secure
composable services for active networks.

7 CONCLUSION

This paper describes the integration of the Seraphim
active security into a software system implementing the
active network architecture [12]. The active security
architecture is dynamic, fully extensible, interoperable
and is based on the underlying active network principles.
The integration demonstrates that the active security
architecture can be easily plugged into the active network
architecture such as Bowman and is flexible and
accommodates a wide variety of security policies and
mechanisms. We show that active security can provide
users the ability dynamically to create and enforce highly
customized and situational policies for their applications.

73

We aso show that the active security can permit security
systems to react to intrusion and can aid the application of
the "need-to-know" security principle to network software
and application security. We believe that exploiting active
security is a step in the direction of designing a
comprehensive and flexible framework to integrate
various security mechanisms and services into the active
network architecture.

8 ACKNOWLEDGEMENTS

We would like to thank Matt Sanders, Ken Calvert
and Ellen Zegura to help us understand the Bowman
NodeOS and CANES execution environment system.

This research is supported by DARPA F30602-98-
1-0192.

REFERENCES

[1] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS:
A Toolkit for Building and Dynamicaly Deploying
Network Protocols. In OPENARCH’98, 1998.

[2] D. Wetherall, U. Legedza, and J. Guttag. Introducing
New Internet Services: Why and How. In IEEE Network
Magazine, July 1998.

[8] S. Murphy, ed. Security Architecture Draft. AN
Security Working Group. Draft.

[4] Ravi Sandhu. Role-Based Access Control. In
Advances in Computers, Vol. 46, Academic Press, 1998.
Also at http://www.list.gmu.edu/articles.htm

[5] The SwitchWare Project
http://www.cis.upenn.edu/~switchware/

Homepage.

[6] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian, Roy
H. Campbell, and M. Dennis Mickunas. An Agent-based
Architecture for Supporting Application Level Security.
In the DARPA Information Survivability Conference and
Exposition, Hilton Head Idland, SC, January 2000.

[7] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas,
Prasad Naldurg, and Seung Yi. Seraphim: An Active
Security Architecture for Active Networks. Tech. Report
2137, Department of Computer Science, University of
Illinois at Urbana-Champaign, November 1999.

[8] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas,
Prasad Naldurg, and Seung Yi. Seraphim: Dynamic
Interoperable Security Architecture for Active Networks.
In IEEE OPENARCH 2000, Tel-Aviv, Israel, March
2000.

[9] Roy H. Campbell, M. Dennis Mickunas, Tin Qian, and
Zhaoyu Liu. An Agent-based Architecture for Supporting
Application Aware Security. In the Workshop on

Research Directions for the Next Generation Internet,
Vienna, VA, May 1997.

[10] Vijay Raghavan. On the Design and |mplementation
of a Security Policy Administration for a Dynamic
Security System. Master's Thesis, Department of
Computer Science, University of Illinois at Urbana-
Champaign, May 1999.

[11] Tim Fraser. An Object-Oriented Framework for
Security Policy Representation. Master’'s Thesis,
Department of Computer Science, University of Illinois at
Urbana-Champaign, December 1996.

[12] K. Calvert, ed. Architectural Framework for Active
Networks. AN Architecture Working Group. Draft.

[13] S. Merugu, S. Bhattacharjee, Y. Chae, M. Sanders,
K. Calvert, and E. Zegura. Bowman and CANES:
Implementation of an Active Network. In Proceedings of
37" Annual Allerton Conference, Monticello, IL,
September 1999.

[14] The CANEs Project Homepage.
http://www.cc.gatech.edu/proj ects/canes/

[15] L. Peterson, ed. NodeOS Interface Specifications.
AN NodeOS Working Group. Draft.

[16] Zhaoyu Liu, Roy H. Campbell, and M. Dennis
Mickunas. Securing the Node of an Active Network. In
Active Middleware Services, Salim Hariri, Craig Lee, and
Cauligi Raghavendra (editors), Kluwer Academic
Publishers, Boston, MA, September 2000.

[17] C. Adams and S. Farrell. Internet X.509 Public Key
Infrastructure Certificate Management Protocols. RFC
2510, March 1999.

[18] The Kaffe Homepage. http://www.kaffe.org/

[19] The PANAMA Project Homepage.
http://www.tascnets.com/panama/

74

APPENDIX H

Developing Dynamic Security Policies*

Prasad Naldurg, Roy H. Campbell, and M. Dennis Mickunas
Department of Computer Science,
University of Illinois at Urbana Champaign
IL, 61801, USA
{naldurg,roy,mickunas}@cs.uiuc.edu

Abstract

In this paper we define and provide a general construc-
tion for a class of policies we call dynamic policies. In most
existing systems, policies are implemented and enforced by
changing the operational parameters of shared system ob-
jects. These policies do not account for the behavior of the
entire system, and enforcing these policies can have unex-
pected interactive or concurrent behavior. We present a pol-
icy specification, implementation, and enforcement method-
ology based on formal models of interactive behavior and
satisfiability of system properties. We show that changing
the operational parameters of our policy implementation
entities does not affect the behavioral guarantees specified
by the properties. We demonstrate the construction of dy-
namic access control policies based on safety property spec-
ifications and describe an implementation of these policies
in the Seraphim active network architecture. We present
examples of reactive security systems that demonstrate the
power and dynamism of our policy implementations. We
also describe other types of dynamic policies for informa-
tion flow and availability based on safety, liveness, fairness,
and other properties. We believe that dynamic policies are
important building blocks of reactive security solutions for
active networks.

1. Introduction

Policy Management tools provide administrators the
ability to specify, implement, and enforce rules to exercise
greater control over the behavior of entities in their systems.
In this article, we describe the policy development life-cycle
for a special class of policies we call dynamic policies.
Without loss of generality, we model shared resources or
entities in a distributed system as objects that export well-
defined interfaces. The behavior of an object is controlled

*This research is supported by DARPA BAA 98-03 and AFRL Contract
Number F30602-98-1-0192

75

by its interface. These interfaces allow other objects (in-
cluding objects acting on behalf of users or administrators)
to query, access, and modify the objects’ operational param-
eters (or state variables) by calling the appropriate methods,
thereby changing the behavior of the system.

Policy management tools automate the task of changing
these parameters by providing a simplified cross-platform
front-end to system implementations. Currently, most net-
work policies are implemented by systems administrators
using tools based on scripting applications [5, 26] that iter-
ate through lists of low-level interfaces and change values
of entity-specific system variables. The policy management
software maintains an exhaustive database of correspond-
ing device and resource interfaces. With the proliferation
of heterogeneous device-specific and vendor-specific inter-
faces, these tools may need to be updated frequently to ac-
commodate for new hardware or software, and the system
typically becomes difficult to manage. As a result, gen-
eral purpose low-level management tools are limited in their
functionality, and are forced to implement only generic or
coarse-grained policies [33].

Since most policy management tools deal with these
low-level interfaces, administrators may not have a clear
picture of the ramifications of their policy management
actions. Dependencies among objects can lead to un-
expected side effects and undesirable behavior [24]. In
Seraphim [23, 7], we remedy this situation by focusing our
attention on a special class of policies that are designed with
explicit knowledge of system behavior and interactions be-
tween various system objects. Our policy development cy-
cle begins with the formal specification of system properties
of interest. These properties correspond to security guaran-
tees we want to preserve in our system. Properties are rep-
resented as sets of desirable behaviors, described in terms
of objects and methods, and are expressed using an appro-
priate formal notation.

Next, we specify a model of the system behavior with
respect to the properties we want to guarantee. This model
can be viewed as an abstraction of behavior of the system

implementation. This specification includes the behavior
of all objects that correspond to identifiers in the property
specifications, and the transitive closure of the objects that
interact with them. We take advantage of model checking
techniques [9] to verify that our system specification can
satisfy the desirable behavior specified by the properties.
Once this is verified, these properties correspond to behav-
iors that can be guaranteed within the framework of our
model. If the property cannot be validated, model check-
ing provides counter-examples that can be used to improve
the system design and implementation.

The mapping between validated properties and policy-
preserving security policies follows from the specifications.
Once the specifications are validated against the system
model, we identify specific objects, variables, and meth-
ods in the system implementation corresponding to the state
variables and mechanisms in the property specifications.
These objects and methods automatically form a part of
the property-preserving policy implementation and enforce-
ment mechanisms. For example, we allow access to system
resource if and only if our system has a rule in its access
control rule database that allows the action. This property
has to be guaranteed by any access control policy imple-
mentation at all times. To change an access control policy,
we need to change the corresponding entry in the access
control rule database. In addition, we need to guarantee that
access is only allowed to objects that can provide authoriza-
tion proofs. These objects, rules and mechanisms therefore
automatically form a part of our policy management infras-
tructure.

Based on the discussion above, we introduce the con-
cept of a dynamic or executable property-preserving pol-
icy. A dynamic policy is a program consisting of a set of
guards and actions, created by our policy administrator. It
encodes not only the logic to modify the system implemen-
tation to change operational parameters, but also includes
all the necessary guards to enforce good behavior and pre-
vent its misuse. For example, in the access control policy
example, the guard can include proofs of authorization, and
the commands are programs to change the access control
rules. In our Seraphim active network prototype, these pro-
grams map directly to active capsules, and can be viewed as
in-line policies [27]. These policies are managed, updated
and changed by executing the appropriate capsules in a suit-
able protected software context (NodeOS or EE) [6]. We
describe examples of guards and commands for different
types of policies in this paper. Active capabilities are spe-
cial guarded commands for access control policies. These
guards and commands allow us to change operational pa-
rameters in the policy implementation, without causing un-
desirable behavior. Policies implemented in this fashion can
make strong and verifiable guarantees about system behav-
ior.

76

We believe that the real application of such policies is in
the design of reactive security systems. By including formal
analysis, verification, and validation in our policy develop-
ment life-cycle, we reason about the effectiveness of our
policies, and can therefore change operational parameters
of dynamic systems with greater confidence. Situational
policies in response to attacks can be developed as the sys-
tem evolves in response to threats and exposures. Once the
framework for a new policy type is in place, new policies
can be created on the fly, following the specification guide-
lines. These policies can also be enforced instantaneously
by sending and executing guard capsules over networks,
during an attack window, to successfully mitigate the im-
pact of an attack. In the course of this article, we describe
a framework for specification, enforcement and implemen-
tation of these dynamic policies within the active network-
ing context. However, our techniques are general enough to
augment any distributed system.

In Section 2 of this paper, we define the class of dynamic
policies and present a general method for constructing these
policies. We also discuss the threat model for this class of
policies. In Section 3 we give a detailed construction of dy-
namic access control policies that are annotated with autho-
rization proofs, based on preservation of safety properties.
In section 4, we provide a brief description of the Seraphim
architecture and the implementation of dynamic access con-
trol policies in the context of active networks. We also ex-
plain why active networks can be used as a framework to
develop, disseminate, and enforce such policies, and how
these policies enhance the usability of the active networking
paradigm. We also briefly describe an example application
developed by the Seraphim group that allows an adminis-
trator to change between two different access control policy
strategies by creating policies on the fly. Section 5 gives ex-
amples of other dynamic policies for information flow and
availability in terms of safety, liveness, fairness and other
properties. We summarize related work in Section 6 and
conclude this paper in Section 7.

2. Dynamic Policies

In this section we describe a general method for design,
specification, enforcement and implementation for dynamic
property-preserving policies. We also describe the threat
model and discuss the attack resilience properties of this
class of policies.

2.1. Policy Development Life-Cycle

We describe the construction of dynamic policies in a
systematic manner. An example of this procedure is the
design of Seraphim’s dynamic access control policies that

is presented Section 3. Our policy development life-cycle
can be broken down into the steps shown in Figure. 1.

System

a—— A b
Spcciﬁcali tication

Policy
Implementation

Policy Enforcement
Dynamic Policies

Policy Validation &
Testing

Figure 1. Policy Development Life-cycle

We explain each of these steps in detail below:

1. Property Specification: In the first step of our life-

cycle, we specify the set of desirable behaviors or
security properties that need to be guaranteed in our
system, using a suitable language or formal notation.
Traditionally, security policies are classified as access
control, information flow, and availability policies de-
pending on the type of behavior they control. Different
types of properties include safety properties which as-
sert that something bad never happens, liveness prop-
erties that assert that something (good) eventually hap-
pens, fairness properties that assert that everybody gets
a chance to use a resource, etc. As described in the
next section, access control policies can be specified
as safety properties, and can be specified using simple
temporal logic operators (LTL [9], PTL [32] etc.). We
investigate the use of different types of logics and logic
operators to represent properties for access control, in-
formation flow, and availability policies.

. System Specification: This step models the environ-
ment of the entities of interest in the property specifi-
cations. Lamport [18] states that the behavior of every
discrete system can be formally represented by a be-
havior. Dynamic systems can be modeled in different
logics such as Rewriting Logic [2, 10] and TLA [17],
by abstracting the behavior of objects and interfaces
and mapping these as state variables and actions (e.g.,
as atomic propositions or predicates) in a formal no-
tation. We develop a behavioral model of the envi-
ronment of the property that includes not only all the

77

entities in the property specifications, but also any en-
tities they interact with in the system. We also specify
this model using an appropriate formal notation. For
example, rewriting logic allows us to develop an exe-
cutable specification that can be used directly for prop-
erty checking. The level of abstraction of the model
depends on the properties we are interested in, and
Steps 1 and 2 are not strictly sequential. Modeling the
behavior of the system helps us understand the differ-
ent entities (or objects), their interfaces and interac-
tions.

. Model Checking: The next step is to check and ver-

ify that the properties can be satisfied by the behavior
description of the model using model checking [9]. A
Model M satisfies a property, expressed as a tempo-
ral logic formula f, if M,s | f, where s is an ini-
tial state. This step helps us determine what security
properties can be enforced in the system, and therefore
allows us to identify what dynamic policies can be im-
plemented, without sacrificing these guarantees. It is
also a useful method to identify fundamental design
flaws, to account for side effects and recognize subtle
interactions that might induce undesirable behavior.

. Mapping and Identification of Policy Implementa-

tion Mechanisms: In this step, we develop the map-
ping between logical variables in the temporal formu-
las of the property specification, and the system objects
and interfaces of the system implementation. Policies
can therefore be implemented by ensuring that the be-
havior of these objects do not violate the property spec-
ifications.

. Development of Policy Enforcement Mechanisms:

The policy implementation mechanisms identified in
the previous step are augmented with enforcers to
guarantee that they do not violate their behavior pro-
files. For example, enforcers for access control mech-
anisms can include reference monitors that intercept
access requests and validate authorization proofs. An
enforcer for a fairness policy can include a priority in-
version mechanism that can be activated by an autho-
rized user or administrator, to stop a misbehaving ob-
ject from hogging resources. In general, the system
may need to be augmented with enforcers to guarantee
desirable behavior, and these form a part of the TCB
(Trusted Computing Base). The system is engineered
so that it is difficult to gain access or ownership to these
enforcers or their interfaces.

. Creation of Dynamic Policies: After the enforcers

are in place, the next step is to specify the dynamic
policies that can be implemented in the framework of
our model and property specifications. These policies

are implemented as code capsules that encode the nec-
essary guards and logic to change the operational pa-
rameters of the system objects, without sacrificing the
properties.

7. Policy Validation and Testing: The final phase in the
policy development of dynamic policies is the testing
of the dynamic policy implementation. So far, the for-
mal specification and verification of properties, sys-
tem models and dynamic policies allows us to reason
formally about security guarantees. The testing phase
actually checks the implementations of the these poli-
cies to make sure they match the specifications. Soft-
ware testing may involve type-checking and informa-
tion flow analysis. Rigorous tests are developed from
the formal descriptions of the model and properties and
validated by observing the traces.

To summarize this subsection, we present a general con-
struction for a class of security policies called dynamic poli-
cies that are based on formal specification, analysis, and
verification of the behavior of systems. Dynamic policies
provide administrators the ability to change the operational
parameters of important system entities, without sacrific-
ing guarantees of good behavior. These policies are imple-
mented as programs and can be created on the fly and im-
- plemented by executing them in a suitable context. Our life-
cycle helps us identify vulnerabilities and reduce the threat
of exposure with respect to policy specification, implemen-
tation and enforcement. A concrete example of dynamic
policies is given in the next section.

In the next subsection we briefly explain the threat model
associated with our policy class.

2.2. Threat Model

Dynamic policies are designed with careful regard to
system behavior. However, designing a system resilient
to all threats and exposures will require similar guarantees
from all components of the system, hardware and software,
and adequate social engineering practices. Our policies pro-
vide a mechanism to change operational parameters to im-
plement situational policies during the running of a system.
The system does not need to be restarted and bootstrapped
to change a policy rule. What we provide is a guarantee
that changing the policy rules does not leave the system in
an undesirable state. With our policies and enforcers, we
augment systems with the mechanisms to ensure that the
desirable properties that can be satisfied by the underlying
system are enforced and not violated.

However, we are also limited by the level of abstraction
in our model. While fine-grained abstractions can increase
the resilience of our system, the performance penalties may

78

be unacceptable. Threats to our system can include exter-
nal factors (e.g., social engineering, insider attacks, com-
promise of authorization credentials, malicious administra-
tors, etc.) that cannot be modeled as undesirable behavior,
because we may not be able to distinguish it from the desir-
able case.

3. Dynamic Access Control Policies

In this section we describe the specification, implemen-
tation and enforcement of dynamic access control policies.
In the first subsection, we develop an initial specification
of these policies following the general outline described
in Section 2. We augment this with authorizations and
present the complete specification in Section 3.3. In Sec-
tion 4, we describe an implementation of these policies in
the Seraphim architecture, along with example applications
that demonstrate the attack resilience properties of these
policies.

3.1. Access Control

In this subsection, we develop a behavioral model of the
access control problem in a distributed system. Access-
rights to resources are traditionally modeled as access con-
trol lists (ACLs) or capability lists. The basic construct
used to represent access control is the access-right tuple
{subject, object, right) which represents a subject’s ac-
cess rights to object interface methods. We restrict our
initial specification to this type of access right, though our
methodology is general enough to develop specifications for
negative access rights, group and role-based access rights
etc. ACLs are object-centric and list all the subjects that
can access a given object, along with specific access rights.
Capability lists are subject-centric and contain a list of ob-
jects and rights that can be accessed by a given subject.
In most systems these two lists are merged into an Ac-
cess Control Matrix, which is a table whose rows are sub-
jects and columns are objects. At the intersection of each
(subject,object) pair is the list of allowed methods that
can be accessed by the subject. ACLs and capability lists
are equivalent with respect to the types of access rights they
model [8]. ACLs allow easy revocation and capability lists
are easier for delegation, and the use of one or the other is a
matter of preference.

An access control operation is therefore a simple lookup
operation on the access matrix to check if the subject (or
the object acting on behalf of the subject) is allowed to call
the method on the relevant object. An access is allowed
if and only if the corresponding entry can be found in the
access control matrix. A formal specification of the basic
access control rule is given as:

Bllow(s, o,m) < (s,0,m) € A‘

Here A is the access control matrix and s, o0, m stand
for subject, object and method respectively. The desirable
behavior of this system or the safety property that is
invariant at all times is:

‘D(Allow(s,o,m) A (s,0,m) € A — skip) ‘

Here O is the henceforth or G operator in a suitable
temporal logic (LTL or PTL).

From the modeling of the behavior of the system we
observe that the safe behavior of the system relies on the
proper enforcement of the property defined above. Access
Control policy development consists of defining methods
to control and modify the Access Control matrix A. Since
the Allow method has three parameters (subjects, objects
and methods), methods that manipulate these parameters
form a part of the policy specification. Different access
control policies can be enforced by adding or removing
subjects, objects and methods. We use the guarded com-
mand language [12, 30] to specify set of executable policy
management operations (or dynamic policies) in the sys-
tem. A guarded command is represented as a (qguard —
command) where a sequence of guards is followed by a
sequence of actions. The guards specify the preconditions
necessary to execute the commands. The system specifi-
cation, with methods to add and remove users, objects and
methods to A is given below (we call subjects users here) :

state vars

U: set of USERS initial ¢

O: set of OBJECTS

A:setof (u: USERS;0: OBJECTS;m : METHODS)

transitions
Allowed(u, 0,m) A (u,0,m) € A — skip

AddUser(u,v') — U :=UU {u'}
RemoveUser(u,u') —
U:=U -~ {u'}; .
A=A~ {{x,o,m)|o€O,me METHODS}

AddObject(u, 0) —>
O =0 U {o};
RemoveObject(u,0) —
O :=0 - o
A=A—{(u,oom)} |uelUme METHODS}

AddObjectMethodT oU ser(u, v',0,m) —
A=AUu{{(x,0,m)}

RemoveObjectMethodFromUser(u, v’ ,0',m') —
A=A~ {{,o,m)}

79

From this specification we observe from the policy man-
agement interfaces that that any user in the system is al-
lowed to add or delete subjects, methods, and objects arbi-
trarily. Furthermore objects and users can be added to the
system, without creating any entries to the Access Control
Matrix. However removing the objects implies that we need
to delete all the corresponding methods. This policy imple-
mentation is of little use in the absence of stronger enforce-
ment mechanisms. What is missing in this specification is
the notion of authorizations.

In practical access control systems, different sets of users
are allowed (or authorized) to create and delete users, ob-
jects and methods. In a DAC (Discretionary Access Con-
trol) system, only the administrators can create and delete
new users. However, users are allowed to create and own
objects and add access rights to objects they own. For
example, if userl owns file,ser1, then userl can insert
(user2, file,ser1, read) into A. In an MLS system, users
and objects can be added only by administrators.

We augment our specification, to make it more meaning-
ful, with special proofs of authorization. In order to change
an entry in A, the user is required to produce a proof at-
testing that he or she is allowed, by some trusted authority,
to actually call the relevant method. In order to verify this
proof we need to add adequate policy enforcement mech-
anisms to our design. Since our aim is to prevent unau-
thorized modification of the capability lists, we add addi-
tional guards to our specification to provide the necessary
mechanism to guarantee that only authorized modifications
are allowed. These guard and action pairs that specify how
to change capability lists are called “active capabilities” in
Seraphim [7].

3.2. Trust Management

One way of generating such proofs is by using an attesta-
tion from a trusted administrator that gives the holder of the
attestation the capability to change an access-matrix entry,
or the permission to call a method to change the entry. This
type of capability (also called a license [34]) or credential
is an attestation of trust. These capabilities can be passed
around among users and processes that are not running in
the Trusted Computing Base. For this reason, they should
be protected against modification. An attestation can have
the same format as an access matrix entry, and can be made
unforgeable by the issuer by attaching a cryptographic dig-
ital signature. The signature should tie in the name of the
issuer and the intended recipient to prevent modification.
This not only prevents modification, but also provides non-
repudiation of ownership.

However, using these signed capabilities as attestations
to control modification of capability lists is not without
problems. Consider the set U of users who can issue signed
capabilities, the set O of shared objects in the system and
the set M of methods corresponding to access rights. The
set of all licenses that can be presented to the policy man-
ager in this system is exponential in the size of these three
sets and is given by C C U x P(O,M). In the absence
of rules to govern the creation and dissemination of these
licenses, the system can quickly become unmanageable. A
user can have many different licenses and may present any
subset of these to the policy manager during an access con-
trol request. The policy manager needs to decide whether
the decision is consistent with the trust management impli-
cations of these attestations and this may be non-trivial. For
example, the monotonicity of the privileges available after
revocation may have to be maintained [34] to prevent unde-
sirable behavior.

In our policy management architecture, we do not use
signed capabilities to create the authorization proofs. In-
stead we rely on two simple credentials that attest to the
identity of the entities (primarily subjects) and the owner-
ship of one entity by another. The credentials in our sys-
tem cannot be delegated and are not available to any en-
tity except the policy implementation logic. An example
identity credential typeof(Alice,administrator) asserts
that the identifier Alice is an administrator. The credential
owns(object, method) or owns(user, object) attests that
the method 1s “owned” or exported by the object or the ob-
ject is owned by the user, respectively. Unlike signed capa-
bilities, the size of these credentials is linear in the size of
the number of users, objects and methods. All commands
that modify the capability lists in the policy logic can in-
clude these credentials.

In the next subsection, we augment our specification
with these credentials for a specific policy type (DAC) and
show how these authorization proofs guarantee only autho-
rized behavior in our system.

3.3. Modified Seraphim DAC Policy

Central to a DAC policy is the notion of ownership.
Users are allowed to own objects and set appropriate ac-
cess control policies for these objects. We associate this
notion of ownership with a method control that gives
the users the ability to delegate rights to access its ob-
ject methods to other users. If a user has the capability
(user, object, control), then it can add methods for the ob-
ject in other capability lists.

In addition to this type of capability, we also have cre-
dentials or attestations of trust. From the policy enforce-
ment point of view, we observe that access is allowed only
when the corresponding capability can be found in the ca-

80

pability list A, and when the subject of the access control
produces an authorization proof. We present the complete
specification of Seraphim’s DAC policy next. The set C con-
tains the identity and ownership credentials attested by the
administrator, as required.

state vars

U: set of USERS initial ¢

O: set of OBJECTS

A:setof (u: USERS;0: OBJECTS;m : METHODS)
C: set of identity and ownership credentials

transitions
Allowed(u,0,m) A (u,0,m) € A — skip

AddUser(u,u') A typeof(u,admin) € C —
U:=UU{'}
A= AU {{u,v,control)}

RemoveUser(u,u’) A (u,u,control) € A —
U:=U-{};
A=A — {{u,v,control)};
A=A-{{(v,oom)|o€eOAme METHODS}

AddObject(u,0) A owns(u,0) € C —»
O =0 U {0}
A = AU {{u, 0, control)}

RemoveObject(u, 0) A {u,0,control) € A —
O :=0 — g
A:=A—{{u,oom)} |ueUAme METHODS}

AddObjectMethodToUser(u,u',0,m) A owns(u,0) € C
Aowns(o,m) € C —
A:=AU{{u,0,m)}

RemoveObjectMethodFromUser(u,u',0',m')
Al o' ,m'y € AN owns(u,0') € C —
A=A {{(,0o,m')}

From the specification, we observe that only administra-
tors are authorized to add users to the system. The iden-
tity credential (typeof(u,admin)) is sufficient to guar-
antee this. In RemoveUsers we observe that the abil-
ity to remove a user depends on the ability to add a
user, and by transitive closure, we can assert that only
administrators can remove users. Any user can also
add a capability for another user, as long as it owns
the object and the object exports the required method.
We observe from the transition functions AddObject
and RemoveObject and AddObject M ethodT oU ser and
RemoveObject M ethod FromU ser, by transitive closure,
that this ownership requirement is indeed enforced by the
credentials (owns(u, 0)) and (owns(o, m)).

To validate the model, for the given DAC specification,

we can reiterate that each transition that can change a ca-
pability list, along with the credentials and capabilities that
are already in the system, under transitive closure, consti-
tutes an authorization proof of why access should be al-
lowed in our system. This is in accordance to the policy
requirements. Any access control system built according to
our specification is always in a safe state with respect to the
manipulation of capability lists.

Other types of access control policies can also be spec-
ified and validated using a similar procedure. Seraphim’s
MLS (Multi-Level Security, which is a type of Mandatory
Access Control) policy is based on the Domain and Type
Enforcement (DTE) [1] policy. Users belong to domains
and objects are classified into types. Policies are imple-
mented using an access control matrix, where the access
rights on object methods are stored at the intersection of
a domain and type entry. We model this as a capability
list indexed by the domain label, instead of the user iden-
tifier. The policy enforcer for MLS is responsible for pre-
processing the (subject, object, method) tuple and con-
verting it into a (domain, type, object, method) tuple re-
quired for DTE. Methods to add and remove users, do-
mains, types, objects to types, and domains to users are
restricted to the administrator by including a guard that
verifies a typeof (user,admin) credential. Adding types,
objects, and methods to a domain require an additional
owns(object, method) credential. A partial specification
of the DTE policy is given below:

state vars

U: set of USERS

O: set of OBJECTS

D: list of DOMAINS {d | d C P(USERS)} init default
T:list of TYPES {t |t C P(0o: OBJECTS)}

A:setof (d : DOMAINS;(t: TYPES,0: OBJECTS); —
m: METHODS)

DDT: set of

(d: DOMAINS;d: DOMAINS;m : METHODS)

L: set of credentials

transitions
Allowed(d, t,0,m) A (d,(t,0),m) € A — skip

AddTypeMethToDom(d,d',t',m') A typeof(d, admin) € C
Nowns(o',m') e C —

A2 AUL, (#,0),m'))
RemoveTypeMethF Dom(d,d' ,t',m'Y A {d,(t',0),m') € A

Atypeof(d,admin) € C —
A=A- {<d’7 (tlvol)l m,>}

In Seraphim MLS, we tightly couple the types and

81

objects, to maintain fine-grained control over the addi-
tion and removal of types and methods to the access
matrix. Note that unlike DAC we do not require the
(owns(user, object)) credential here. For a complete spec-
ification of Seraphim’s dynamic access control policies, in-
cluding RBAC, please refer to [29].

3.4. Model Validation

From the specifications for Seraphim DAC and MLS,
we claim that if the credentials are generated correctly and
the administrators keys are not compromised, then the exe-
cutable policies allowed in our system have the required au-
thorization proofs necessary (by transitive closure) to guar-
antee that authorized access to a resource is synonymous to
the possession of unforgeable credentials.

In the next section, we describe briefly the Seraphim
active network implementation of dynamic access control
policies.

4. Active Networks and Dynamic Policies

In this section we provide a brief overview of our
Seraphim security architecture for active networks. For
more details refer to [23, 7, 22, 19, 20]. The major compo-
nents of our architecture and their interactions in the context
of the active network architecture are shown in Figure. 2.

ANTS PLAN CANES
EE EE ®0®®
. /

EE
- NodeOS
Seraphim Sccurity a4
/GB?{H . Policy
Policy Enforcer
(Implcmcmalion.) a

S T

NodeOS$

Resources

Figure 2. Seraphim Active Network Node

The key component of Seraphim Dynamic Policy Archi-
tecture is the Security Guardian. The guardian is the policy
enforcement mechanism and is implemented as a colocated
extension to the Node OS. Every node has a guardian that
intercepts all accesses to node resources. The policy frame-
work implementation is also a part of the guardian. The

implementation is componentized and reconfigurable, and
can be downloaded dynamically when required.

To change operational parameters that change the policy
implementation, administrators use the interface provided
by the policy framework to create a customized piece of
code that encodes the type of access control policy and the
guarded commands from the policy specifications from the
previous section. This code fragment is called the active ca-
pability (AC) [7, 23]. Unlike a traditional capability, which
is merely a static authorization credential that encodes the
principal and the permissions associated with the principal,
an active capability is actually executable Java bytecode in
our implementation !. In addition, an active capability is
protected by cryptographic digital signatures, resides in user
space, and can be freely passed around.

An active capability relies on a policy framework for
context. An application presents an active capability along
with its regular data or protocol capsules to the active
router’s guardian at execution time. The enforcement mech-
anisms in the guardian recreates the context of the policy
type within its policy framework. If at any point during
this process, the policy framework discovers that it does
not have an implementation for the type of the policy, it
downloads the code dynamically into the framework, using
the underlying active network. It then instantiates the run-
time parameters associated with the active capability in its
sandbox-like environment and executes the active capabil-
ity in this environment. Based on the result of the evalua-
tion of this active capability, the access control decision is
enforced.

From this description, we observe that active networks
not only help in realizing the concept of dynamic policies,
but also allow the development of “what you need is what
you get (WYNIWYG)” implementations. In addition, the
paradigm is enriched by these policies because their be-
havior can be validated by formal methods. One of the
main concerns about active networking is the proliferation
of code capsules that can cause arbitrary and undesirable
behavior. Dynamic policies are examples of capsules that
preserve a verifiable and well defined behavior. By de-
ploying dynamic access control policies on chosen network
routers, administrators can have greater control over what
active capsules are allowed to execute and enforce stricter
access control policies on these routers under attack.

In the next subsection, we describe an example appli-
cation scenario which demonstrates the expressiveness and
usefulness of these policies.

Note that this definition of active capability is less general than the one
described previously

82

4.1. Example Dynamic Security Scenarios

Our dynamic policy architecture allows many different
access control strategies to exist in the same system, though
only one type of strategy may be active at any time. Within
each strategy, the policy implementation can be changed dy-
namically without affecting the safety properties, while pro-
tecting against unauthorized modifications of these policies
at the same time.

We have built two applications of example scenarios to
demonstrate our dynamic access control policies from the
specifications. The first example is the dynamic firewall.?
Initially all routers are bootstrapped with the same access
control policy. Then an attack scenario is simulated, where
we generate an unwanted ICMP ping capsule directed at a
victim router, forcing the victim to reply with another ICMP
capsule. An attack detection agent triggers an alarm that
dynamically removes the ability of a ping capsule to ac-
cess the routing table implementation on the victim router.
The victim router drops these packets without replying, and
propagates a “‘vaccine” to its upstream router, which deletes
its ICMP ping access rule and so on. Eventually, the at-
tacker’s flood is stemmed at the source. Once the attack
stops at a node, the access rule is reinstated. The dynamic
firewall grows outwards from the victim, filtering packets
closer and closer towards the attacker and remains in place
only as long as the duration of the attack. The average over-
head [7] for an application running on a Sparc 10 on the
same 100Mbps average time to send and install a vaccine
across the network is 34ms.

Our second example demonstrates how we change the
DAC policy on a specific computer to a more restrictive
MLS policy to protect the integrity of information flowing
between sensitive objects on the system. This policy can be
deployed in response to an email virus. In the new MLS
policy, users are prevented from sending messages on the
network by removing their ability to transfer to the network
domain and send their messages. This example is straight-
forward and requires that the policy logic of both MAC and
MLS already exist on the system. Policies are developed
and installed by the administrator on the fly, and when the
administrator is done implementing the policy in the new
strategy, the appropriate enforcement mechanism is acti-
vated. The performance overheads to switch between two
strategies for our simple example was ~ 2s. Other exam-
ples of dynamic policies in Seraphim and detailed perfor-
mance numbers can be found in [21, 20].

5. Information Flow and Availability Policies

Security policies are classified as access control, infor-
mation flow, and availability policies [30]. As we saw in

2This application was demonstrated in [7)

Section 3, access control policies can be specified as safety
properties (also shown in [30]). In this section, we exam-
ine the other two classes of policies and explore the type of
properties and logic needed to specify these policies. Prop-
erty types include safety, liveness, fairness and denial of ser-
vice. We also include example specifications of these prop-
erties and briefly describe some enforcers for such policies.
Since this section describes work in progress, we do not
give complete specifications of systems.

5.1. Information Flow Policies

Information flow policies specify controls over flow of
information among different classes. Information flow poli-
cies can be specified as either safety of liveness proper-
ties [30, 32]. An example of a safety information flow pol-
icy is the MAC policy that regulates the directional flow
(send or receive) of certain classes of information. In this
sense, a well-behaving information flow policy is a safety
property where no bad flows occur. To enforce this policy,
flow filters are added to the points where information flows
in and out of the system objects (or ports). A partial speci-
fication of the Bell-LaPadula [3] information flow policy as
a safety property is shown below:

state vars U: set of USERS
O: set of OBJECTS
L: POSet of LABELS immutable
UM:set of (u : USERS;l: LABELS)
OM:set of (0 : OBJECTS;l : LABELS)

transitions

Read(user,obj) A (user,labelyser) € UM
A{obj, labeloy;y € OM A (labelyser > labeloy;) — skip

Write(user, obj) A (user,luser) € UM
A{obj, lon;) € OM A (labelyser < labelop;) — skip

To enforce this policy, immutable labels are added to
all objects. User and Object labels can only be changed by
the system owner. Before any read or write operation (e.g.,
before a send or receive), the labels are checked to see if
they violate the two safety properties “no read up” and “no
write down”, expressed as:

(D(Read(user, obj) < (labelyser > labelob]-ect))J

(D(Write(user, obj) & (labelyzer < labelab]-)ﬂ

To enforce this, all objects that send and receive infor-
mation between each other have to be augmented with a
guard that enforces this property. Dynamic policies in this

case will correspond to the policies that can add users and
objects along with their labels.

However, other information flow policies can be ex-
pressed as liveness properties. Lamport [16] showed that
the liveness property is dependent on the safety properties
of sharing mechanisms. Liveness does not imply safety
and vice-versa. A classical example is the specification of
reliable streaming protocol. A property specification for
such a protocol is given as (for all messages):

E](send — oreceive) ‘

Here the ¢ operator stands for the eventually operator
or the F (in the future) operator in LTL. This property im-
plies that all messages sent must be eventually received. A
simple windowing protocol satisfies this specification. The
enforcer in this case is the windowing implementation, and
dynamic policies to change the window size and parameters
can change the operational parameters of the protocol with-
out changing its behavioral guarantees. Liveness properties
can be specified using the O and < operators [32). However,
as we see in the next subsection, this property specification
does not address fairness and denial of service issues.

5.2. Availability Policies

In the previous subsection, we showed example specifi-
cations of liveness properties. However these policies do
not impose any bounds on the availability of resources. A
sender may experience starvation and never be able to send,
in which case channel liveness as specified by the prop-
erty is vacuously true at all times (recall that an implication
P — q is true when p is false).

Now consider the following property:

| (OCsend — OCreceive) [

This represents the behavior of a system in which, for
all users, if the trace of system behavior contains sends
infinitely often, represented by O, then it also contains
receives infinitely often. This says that if the sender does
not starve, the message will be eventually received. While
this property is adequate to represent the notion of fairness,
it does not express availability constraints. Specifically, it
does not impose any bounds on the amount of time (finite
or minimum) a sender should wait before a user can send
in the first place. A policy implementation that ensures
availability for sends (or prevents sender starvation) would
therefore include some bounds on individual resource con-
sumption, e.g., and enforce this using channel arbitration,
priority queues or other fair queuing disciplines that multi-
plex the senders packets. This ensures that if users want to
send, they do not wait forever.

We also observe that the example fairness specifications
do not prevent denial of service. What is missing from
the specification is the notion of “making progress” or re-
silience to denial of service. Yu and Gligor [35] develop a
Finite Waiting Time (FWT) Policy, to prevent denial of ser-
vice and show that in order to model the notion of denial
of service resistance, in addition to fairness, simultaneity
and user agreements are required to make progress. In the
channel modeling example, in order to prevent a user from
waiting forever, several things need to happen at the same
time (simultaneity). When the resource becomes available,
the user must have something to send. It is not enough if
only one of these conditions hold, to make progress. Denial
of service can also take place because another high priority
user may decide to send, delaying the send of the lower pri-
ority user. Therefore, in order to guarantee a finite waiting
time, user agreements to preempt this type of behavior are
also required. Millen [25] extends the notion of denial of
service resistance by defining a resource allocation model
that satisfies MWT or maximum waiting time policies in
addition to FWT policies.

We are extending this notion and modeling the Dis-
tributed Denial of Service (DDOS) problem, by identify-
ing appropriate property specifications and enforcers, and
developing appropriate dynamic policies to change oper-
ational parameters while guaranteeing DDOS resilient be-
havior properties. We have developed an enforcement pro-
tocol using credentials that authorizes the use of bandwidth
(CABs), along with a dynamic filtering implementation that
enforces the user agreements, simultaneity, liveness, and
safety properties required to prevent denial of service. The
complete details of these mechanisms will be published in
a forthcoming paper.

6. Related Work

In this section we present a brief summary of related
work. Policy specification, reasoning and trust management
are mature areas of research, and to include all related re-
search is beyond the scope of this paper. We only attempt
to highlight relevant recent research and any omissions are
inadvertent. We classify related research into the following
categories: security issues in active networks, enforceable
policies, security policy specification, specification of ac-
cess control policies, and trust management.

The Active Networks Security Working group, which in-
cludes the PIs in the Seraphim project, has developed a Se-
curity Architecture draft that highlights the important secu-
rity issues, and a comprehensive threat and trust model for
the active networking paradigm. Murphy et al.’s [28] pro-
posal for strong security in active networks discusses the
issues and requirements for authentication and authoriza-
tion mechanisms in the active networking paradigm. This

84

research deals with the trust assumptions and protection
mechanisms required to prevent different active network-
ing entities such as the end-user, NodeOS, EE and active
capsules from behaving maliciously and compromising the
network infrastructure as a result. Parallel research in the
Seraphim group [19, 22, 20] with respect to the use of stan-
dard APIs to augment this required security, together with a
flow analysis of the security protocols enabled by the APIs,
complement our research in dynamic policies. A secure ac-
tive network infrastructure, though orthogonal to the work
presented here, is a prerequisite to the deployment of dy-
namic policies in active networks.

The PLAN project [14] has developed a "Packet Lan-
guage for Active Networks” which is a resource-bounded
functional programming language. The fundamental con-
struct in the language is remote evaluation of delayed func-
tional applications. By restricting the language, PLAN al-
lows users to develop active capsules that have attack re-
stlience properties, such as CPU and memory denial of ser-
vice protection, and guaranteed termination. The choice of
a programming language to encode dynamic policies is im-
portant. In addition to the behavioral guarantees, program-
ming language safety (such as PLAN) needs to be an inte-
gral part of any dynamic policy implementation.

Schneider defines a class of policies called Enforceable
Policies [30] that can be enforced by execution monitoring.
This class of policies is specified using a special automata
called Security Automata and is concerned with the preser-
vation of safety properties. Our class of dynamic policies
super-scribes this definition by providing a general method
for building security properties with verifiable properties,
based on the modeling of system behavior and validation of
property satisfaction. As such, enforceable policies are an
important subset of dynamic policies.

Different notations and languages for security policy
specification have been proposed by various researchers.
These include the policy specification from the IETF Policy
Framework Working Group [33], the original SPKI project,
and the SecPol project. The IETF Policy Framework Work-
ing Group[33] is working on a policy framework specifi-
cation that focuses on the development and enforcement of
policies for QoS and IPSec applications. A special language
to specify policy rules, which consist of a set of conditions
and a set of actions, is proposed by this working group.

The SPKI system was proposed to provide mechanisms
to support security in a wide range of Internet appli-
cations, including IPSEC protocols, encrypted electronic
mail, WWW documents and payment protocols etc [13].
The SecPol approach advocates the use of a role-based
framework to manage security in large, multi-organizational
distributed systems[31]. The SecPol project has developed
Ponder[11], a declarative, object-oriented language to spec-
ify security policies, group them into roles and relation-

ships, and define management structures. However, none
of these projects include a formal modeling of systems for
which the policies are developed, or use model checking to
verify that the model can actually enforce the properties and
policies of interest.

Jajodia et al. [15] propose a language for expressing au-
thorizations and enabling the enforcement of multiple ac-
cess control policies. They show how programs written in
this language effectively capture the abstractions necessary
to define different access control models. The security prop-
erties of implementation programs are not modeled.

Weeks [34] provides a formal semantics for expressing
trust management systerns via a fixpoint lattice model for
monotonic assertions. This model is useful to understand
the trust management of capability-based assertions. Chan-
der et al. [8] provide a state transition approach to model the
interaction of trust management and access control. The in-
teraction of access control and trust management including
the use of unforgeable credentials to provide authorization
proofs and the equivalence of ACLs and capability lists can
be validated in their framework.

The capability-based KeyNote [4] system of Blaze et al.,
provides a single language for both policies and creden-
tials, based on predicates that describe the trusted actions
permitted by holders of specific public keys (or other cryp-
tographic identifiers). Our model integrates access control
policy management with a simple trust management mech-
anism. The main purpose of KeyNote is to express and eval-
uate policies and trust delegations that occur in PKI appli-
cations. KeyNote can be integrated into our framework for
trust management for other types of dynamic polictes that
require more expressive credentials.

7. Conclusions

To summarize, in this paper, we describe a general
method to construct a special class of security policies we
call dynamic policies. Through the policy development life-
cycle, we explore the specification, verification, and valida-
tion of these policies using suitable formal notations and
methods. We also describe the mechanisms for policy en-
forcement based on the implementation of the specification.
The policies created in this framework can be updated by
administrators during the operation of the system without
compromising the security properties of the implementa-
tion. As an example, we develop a formal specification of
access control policies as safety properties in the behavioral
model of our system, whose enforcement is augmented with
proofs of authorization. We also describe our implementa-
tion of dynamic access control policies in Seraphim, in the
context of active networks, and demonstrate the power of
our policies with two examples. Construction of other types
of dynamic policies based on liveness, faimess and denial of

85

service resistance are also briefly described.

At a higher level, our rescarch explores the behavioral
descriptions of programs that can be sent across networks
to change a system’s software state. We explore this in
the context of security guarantees that can be made about
the system state before, during, and after the executton of
such programs. This research is crucial in the context of ac-
tive networking and in other dynamic environments where
operational parameters are constantly changing. Our dy-
namic policy development life-cycle enables the creation of
customizable programs that can be deployed on-the-fly to
enforce and implement strong security policies. We also
strongly believe that security concerns need to be integrated
into models of system behavior, and security properties
have to form an integral part of system specifications. Our
major contribution is that we present a powerful set of meth-
ods and mechanisms that can be used to create policies with
strong security guarantees, eliminating guesswork in the de-
sign and deployment of reactive security systems.

At a more fundamental level, we also argue that dynamic
environments require dynamic security solutions. Dynamic
policies enable administrators to react to vulnerabilities de-
tected by IDS and risk analyzers with greater confidence.
By including temporal properties in our design of secu-
rity policies, we can change our system implementations
in a controlled manner, and turn on restrictive attack re-
silient policies at will, without sacrificing security guaran-
tees. This dynamism also allows us to change back to de-
fault policies after the attack has been mitigated, allowing
us to implement minimal security solutions on a need to
protect basis, and amortize performance penalties. We be-
lieve that this is our unique contribution in the context of
other important research in security for active networks that
explore the mechanisms needed to secure the underlying ac-
tive network infrastructure, language safety issues, and se-
cure bootstrapping etc. One of the major concerns in the
active networking paradigm is how to change software state
on routers “actively” without sacrificing protection guaran-
tees. We believe that dynamic policies will be important
components of solutions to address these concerns.

References

[1] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and
S. A. Haghighat. A domain and type enforcement UNIX
prototype. In Proceedings of the 5th Usenix UNIX Security
Symposium, Salt Lake City, Utah, June 1995.

D. Basin, M. Clavel, and J. Meseguer. “rewriting logic as a
metalogical framework”. In S. Kapoor and S. Prasad, edi-
tors, Twentieth Conference on the Foundations of Software
Technology and Theoretical Computer Science, New Delhi,
India, December 13-15, 2000, Proceedings, volume 1974,
pages 55-80, 2000.

(21

(3]

(4]

[5]

[6

—

7

[8]

(91

(10}

[11]

[12]

[13]

[14]

[15]

(16]

{171

(18]

{19]

[20]

D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Report
M74-244, Bedford MA, 1973.

M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures. In Se-
curity Protocols International Workshop, Cambridge, Eng-
land, 1998.

J. Boyle et al. The COPS protocol. Internet Draft, February
24, 1999.

K. Calvert et al. Architectural framework for active net-
works. AN Architecture Working Group, Draft, 1998.

R. H. Campbell, Z. Liu, M. D. Mickunas, P. Naldurg, and
S. Yi. Seraphim: dynamic interoperable security architec-
ture for active networks. In OPENARCH 2000, Tel-Aviv,
Israel, March 26-27, 2000.

A. Chander, D. Dean, and J. Mitchell. A state-transition
model of trust management and access control. In I4th
IEEE Computer Security Foundations Workshop, Cape Bre-
ton, Nova Scotia, June 2001.

E. Clarke, O.Grumberg, and D. Peled. Model Checking. The
MIT Press, 1999.

M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. F. Quesada. Maude: Specification and
programming in rewriting logic. Theoretical Computer Sci-
ence, 2001. To appear.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder:
A language for specifying secuirty and management policies
for distributed systems. Imperial College Research Report,
July 2000.

E. Dijkstra. Guarded commands, nondeterminacy, and for-
mal derivation of programs. Communications of the ACM,
18(8):453-457, 1975.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, et al. SPKI
certificate theory. RFC 2693, September 1999.

M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Net-
tles. PLLAN: A Packet Language for Active Networks. In
Proceedings of the Third ACM SIGPLAN International Con-
ference on Functional Programming Languages, pages 86—
93. ACM, 1998.

S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino.
A unified framework for enforcing multiple access control
policies. In In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, volume 26,2 of
SIGMOD Record, pages 474485, 1997.

L. Lamport. A simple approach to specifying concurrent
systems. In System Research Center, DEC, Palo Alto, CA,
Report No., 15, 1986.

L. Lamport. Specifying concurrent systems with TLA+. In
Calculational System Design. M. Broy and R. Steinbrggen,
editors, 1999,

L. Lamport. A formal basis for the specification of concur-
rent systems. Notes for the NATO Advanced Study Institute,
June 2000.

Z. Liu. Securing the Node of an Active Network. PhD the-
sis, University of Illinois, Department of Computer Science,
Dec. 2001.

Z. Liu, R. H. Campbell, and M. D. Mickunas. Securing
the node of an active network. In Active Middleware Ser-
vices. Kluwer Academic Publishers, Boston, Massachusetts,
September, 2000.

86

[21]

(22]

[23]

f24]

(25]

[26]
[27])

[28]

(29]

[30]
31]

£32)

(33]
(34]

[35]

Z.Liu, R. H. Campbell, S. K. Varadarajan, P. Naldurg, S. Yi,
and M. D. Mickunas. Flexible secure muiticasting in ac-
tive networks. In ICDCS International Workshop on Group
Computation and Communication, Taipei, Taiwan, April,
2000.

Z. Liu, P. Naldurg, S. Yi, R. H. Campbell, and M. D. Micku-
nas. Pluggable active security for active networks. In Inter-
national Conference on Parallel and Distributed Computing
and Systems (PDCS 2000), Las Vegas, Nevada, November
6-9, 2000.

Z.Liu, P. Naldurg, S. Yi, T. Qian, R. H. Campbell, and M. D.
Mickunas. An agent based architecture for supporting ap-
plication level security. In DARPA Information Survivability
Conference and Exposition, Hilton Head Island, SC, January
25-27, 2000.

P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. In Pro-
ceedings of the FREENIX Track of the 2001 USENIX Annual
Technical Conference.

J. K. Millen. A resource allocation model for denial of ser-
vice. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 137-147, 1992.

R. Mundy, D. Partain, and B. Stewart. Introduction to SN-
MPv3. RFC 2570, April 1999.

S. Murphy et al. Security architecture for active nets. AN
Security Working Group, July 15, 1998.

S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee.
Strong security for active networks. In 2001 IEEE Open Ar-
chitectures and Network Programming Proceedings (Ope-
nArch 2001), Anchorage, AL, Apr 27-28, 2001. pp 63-70.

P. Naldurg and R. Campbell. Dynamic access control poli-
cies in seraphim. Technical report, Department of Computer
Science, University of Itlinois at Urbana-Champaign, 2002.
F. Schneider. Enforceable security policies. ACM Transac-
tions on Information and System Security, 3(1):30-50, 2000.
SecPol. SecPol project homepage, 2000. URL: http://www-
dse.doc.ic.ac.uk/projects/secpol/SecPol-overview.html.

A. P. Sistla. Safety,liveness and fairness in temporal logic.
Formal Aspects of Computing 6(5): 495-512 (1994), up-
dated 1999.

M. Stevens et al. Policy framework. IETF draft, September
1999.

S. Weeks. Understanding trust management systems. In
2001 IEEE Symposium on Security and Privacy, May 2001.
C.-F. Yu and V. D. Gligor. A formal specification and ver-
ification method for the prevention of denial of service. In
Proc. 1988 IEEE Symposium on Security and Privacy (Oak-
land ‘88), Oakland, CA, USA, Apr. 1988, pp.187-202.

